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Abstract. Functional connectivity (FC) networks based on functional
magnetic resonance imaging (fMRI) data have been widely applied
to automated identification of brain diseases, such as attention deficit
hyperactivity disorder (ADHD) and Alzheimer’s disease (AD). To gen-
erate compact representations of FC networks for disease analysis, vari-
ous thresholding strategies have been developed for analyzing brain FC
networks. However, existing studies typically employ predefined values
or percentages of connections to threshold the whole FC networks, thus
ignoring the diversity of temporal correlations (particularly strong corre-
lations) among different brain regions. In addition, in practice, it is usu-
ally very challenging to decide the optimal threshold or connection per-
centage in FC network analysis. To address these problems, in this paper,
we propose a weight distribution based thresholding (WDT) method for
FC network analysis with resting-state function MRI data. Specifically,
for FC between a pair of brain regions, we calculate its optimal threshold
value by using the weight (i.e., temporal correlation) distributions of the
FC across two subject groups (i.e., patient and normal groups). The pro-
posed WDT method can adaptively yields FC-specific thresholds, thus
preserving the diversity information of FCs among different brain regions.
Experiment results on both ADNI and ADHD-200 datasets with rs-fMRI
data demonstrate the effectiveness of our proposed WDT method.

1 Introduction

The human brain is a complex system that depends on functional interaction
among distributed brain regions. This system can be characterized as a connec-
tivity network, where each node represents a brain region and each edge quanti-
fies the connectivity between a pair of brain regions. Network analysis provides
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an important tool to explore the core organization of the human brain, as well
as the association between brain functional deficits and structural disruption
caused by brain diseases [1]. Previous studies have investigated network proper-
ties associated with various brain diseases, such as attention deficit hyperactivity
disorder (ADHD), Alzheimer’s disease (AD) and its prodromal stage (i.e., mild
cognitive impairment, MCI). In the past decades, advanced imaging techniques,
such as functional magnetic resonance imaging (fMRI), provide efficient ways to
map functional connectivity (FC) of the brain [2], to help better understand the
pathology of brain disorders. Using fMRI data, many studies focus on employ-
ing FC networks to quantify the temporal correlation between intrinsic blood
oxygen level-dependent (BOLD) signal fluctuations of brain regions for brain
disease analysis [3].

Among various studies, graph learning has shown its superiority in the anal-
ysis of brain FC networks, which not only provides a quantitative measurement
of network properties (characterizing the segregated and integrated nature of
brain activity), but also offers a general framework for comparison of heteroge-
neous graphs/networks [4]. In existing graph learning methods, FC networks are
generally fully-connected weighted graphs, where each node (e.g., brain region)
is connected to all the other nodes in the graph and weight values (e.g.temporal
correlations) of edges are continuous within the range [−1, 1]. Given P nodes,
there will be (P − 1)P/2 edges in a fully-connected graph. To characterize the
topological properties of FC networks and facilitate computer-aided analysis, the
thresholding methods are usually used to threshold a FC network for construct-
ing a binary network, where the connection (i.e., edge) between brain regions is
either present or not.

Network thresholding methods offer at least three advantages. First, since
the connectivity in an FC network represents the temporal correlation between
brain regions, some weak and unimportant connections could be obscure the
network topology, when using together with strong and important connections.
Previous studies have found that brain regions have sparse anatomical connec-
tions (i.e., a brain region may be only connected with specific brain regions) [5].
Therefore, it is important to remove those weak or unimportant connections
by using thresholding methods [6]. Second, it is simpler to extract meaningful
measures from thresholded networks for network analysis [1], because most of
the existing network measures are defined on thresholded networks and a large
number of connections makes it difficult to extract meaningful network represen-
tation [7]. Also, thresholding FC networks can reduce the computational burden
of computer-aided network analysis methods [8].

Currently, most of the existing threshold methods can be divided into two
categories: (1) single-threshold based methods, and (2) sparsity-based methods.
Methods in the first category usually threshold the whole brain network using
a predefined value. That is, for any pair of brain regions, there exists an edge
between them if and only if the corresponding edge weight (e.g., temporal corre-
lation) is larger than the predefined threshold. In contrast, methods belonging to
the second category typically preserve a predefined percentage (e.g., top 30%) of
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connections with the strongest temporal correlation. However, these two types of
methods ignore the diversity of temporal correlations (particularly strong corre-
lations) among different brain regions, thus could not reflect the real difference
of FC networks of different subject groups. Figure 1 illustrates two brain FC
networks for a normal control (NC) and a patient, respectively. Each network
contains three brain regions, denoted as A, B, and C, respectively. For each sub-
ject, the weights (i.e., temporal correlations) of FCs between different pairs of
brain regions are different, e.g., for the normal, weight of connection is 0.9 for FC
between region A and B, and is 0.7 for FC between region B and C. And weights
of three FCs in the patient’s network have been changed by a brain disease.
As shown in Fig. 1, both thresholded networks achieved by the single-threshold
based method (see Fig. 1 (a)) and the sparsity-based method (see Fig. 1 (b))
can not characterize the real difference of functional connectivity between brain
networks of the NC and the patient.

Intuitively, we could employ FC-specific thresholds to preserve the diver-
sity information of FC among different brain regions. As shown in Fig. 1 (c),
we employ a specific threshold for each FC, yielding two thresholded networks
that can characterize the real difference between FC networks of two subjects.
However, it is challenging to determine the optimal threshold for each FC in
brain networks. In practice, we often explore the network properties over a broad
range of available thresholds to determine the optimal one [9], which significantly
increases the computation burden.

To address these problems, in this paper, we propose a weight distribution
based thresholding (WDT) method for brain disease analysis by using fMRI data.
Specifically, for FC between each pair of brain regions, we adaptively construct
a threshold by using weight distributions of the FC across two subject groups
(i.e., patient and normal control), where each distribution is estimated by using
weights of the FC from subjects in same group. Our WDT method can adaptively
yield FC-specific thresholds to preserve the diversity information of FCs between
different brain regions, thus better reflect the difference of FC networks between
different subject groups. The proposed method is evaluated on two fMRI datasets
for brain disease diagnosis, with experimental results demonstrating promising
results compared with existing threshold methods.

2 Method

2.1 Subjects and Image Preprocessing

In this study, we use two datasets with resting state fMRI (rs-fMRI) data. The
first dataset is download from the ADNI database, containing 43 later MCI
(lMCI, 26 male (M) and 17 female (F), aged 72.1 ± 8.2 years), 56 early
MCI (eMCI) (21M/35F, aged 71.2 ± 6.8 years), and 50 NCs (21M/29F, aged
75.0 ± 6.9 years). Data acquisition is performed as follows: the image resolution
is 2.29 – 3.31 mm for inplane, and slice thickness is 3.31 mm, TE = 30 ms and
TR = 2.2–3.1 s. Another dataset is ADHD-200 from New York University site,
including 118 ADHD (25M/93F, aged 11.2 ± 2.7 years) and 98 NCs (51M/47F,
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Fig. 1. Examples of functional connectivity (FC) networks (top) for a normal control
(NC) and a patient, and the corresponding thresholded networks (bottom). (a) Thresh-
olded networks using a single-threshold based method with threshold T = 0.65. (b)
Thresholded networks using a sparsity-based method with the percentage of P = 67%.
(c) Thresholded networks using with specific thresholds for different connections. Note
that there are different temporal correlations (i.e., weights) for different connections
in the FC network of the NC (or patient) subject, and the connection weights in the
patient’s network have been changed. From (a) and (b), we can see that the thresholded
networks using a single-threshold or a percentage of connections can not characterize
the diversity of functional connectivity in networks of the NC and the patient. We may
need threshold FCNs with specific values for different connections, as shown in (c).

aged 12.2 ± 2.1 years). The acquisition of data in ADHD-200 is performed as
follows: the matrix size is 49 × 58, axial slices is 47, slice thickness is 4 mm,
FOV = 240 mm, TR = 2 s, TE = 15 ms, flip angle = 90, and the voxel size is
3 × 3 × 4mm3.

Following [10], we preprocess images from the ADNI dataset using the stan-
dard pipeline, including (1) removing the first 10 rs-fMRI volumes, (2) slice tim-
ing and head motion correction, (3) dividing the brain space of fMRI scans into
90 regions-of-interest (ROIs) using the Automated Anatomical Labeling (AAL)
template [11], (4) band-pass filtering within a frequency interval of [0.025Hz,
0.100Hz], (5) extracting BOLD signals from the gray matter tissue, and (6)
computing the mean time series of ROIs to construct FC networks using the
Pearson correlation coefficients (PCCs) as the measures of FC between ROIs.
For ADHD-200, we directly used the time series from the Athena preprocessed
data, with details shown on the Athena website1. Briefly, the data pre-processing
steps include: (1) removing the first 4 image volumes, (2) slice timing and head
motion correction, (3) extracting the fMRI time series from gray matter regions,
(4) temporal band-pass filtering [0.009Hz, 0.08Hz], (5) partitioning the brain
space into 90 ROIs using AAL template, and (6) extracting mean time series of
ROIs, and (7) constructing FC networks based on PCC.

1 http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline.

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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Fig. 2. Illustration of normal distributions of FC for the patient and NC groups, includ-
ing three cases, i.e., (a) two distributions with different means, (b) the same or similar
distributions, and (c) two distributions with the same or similar mean.

2.2 Weight Distribution Based Thresholding Method

To better characterize the diversity of temporal correlations between differ-
ent pairs of brain regions, we develop a weight distribution based thresholding
(WDT) method to adaptively determine the optimal threshold for each FC in
brain networks. Given N training subjects along with their response vectors
Y = [y1, y2, · · · , yN ], we denote F = [F1, F2, · · · , FN ] as their FC networks,
where Fi is the FC network (i.e., adjacency matrix) of the ith subject and yi is
the corresponding class label (i.e., patient or NC). We partition all training sub-
jects into two groups (i.e., patient and NC groups) according to their class label,
denoted as F+ = [F+

1 , F+
2 , · · · , F+

N1
] and F− = [F−

1 , F−
2 , · · · , F−

N2
], respectively.

For FC of a pair of brain regions i and j, we compute its optimal threshold Tij

according to weight distributions of the FC across two subject groups. Here, we
suppose that the weights of the FC in subjects from the same group follows the
normal distribution, denoted as N+1(μ+1, σ+1) and N−1(μ−1, σ−1) for patient
and NC groups, respectively. The parameters of two normal distributions can
be estimated using the subjects in the corresponding group (i.e., F+ or F−).
As shown in Fig. 2, there are three cases for these two normal distributions. (1)
Two distributions are significantly different with different means, as shown in
Fig. 2 (a), implying that FC has been significantly changed in the patient group
compared with that in the NC group. Therefore, the optimal threshold is the
intersection point of two distributions, located in the range of [μ1, μ2]. (2) These
two distributions are the same or very similar, as shown in Fig. 2 (b), suggesting
that there is no significant difference for FC between patient and NC groups. For
simplicity, we remove their connection (i.e., setting the corresponding threshold
Tij = 1). (3) These two distributions are different, but their means (i.e., μ+1

and μ−1) are the same (or similar), as shown in Fig. 2 (c), indicating that the
corresponding FC is unstable for subjects in the same group. This implies that it
is difficult to find the stable patterns of FC between the patient and NC groups.
After removing the corresponding connection, we can compute the threshold Tij

as follows:

Tij =

{
p, if KL(N+1,N−1) > δ and |μ+1 − μ−1| > θ,

1, otherwise.
(1)
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Algorithm 1: Proposed Weight distribution based thresholding (WDT)
method
Input: A set of FC Networks F , a response vector Y , and two parameters δ

and θ
Output: A threshold matrix T

1 Divide all training subjects into patient group (denoted as F+) and NC group
(denoted as F−) according to their class labels.

2 foreach FC between pair of brain regions i and j do
3 Estimate the distributions of N+1(μ+1, σ+1) and N−1(μ−1, σ−1) using

subjects in F+ and F−, respectively;
4 Compute KL(N+1,N−1) using Eq. 2;
5 if KL(N+1,N−1) > δ and |μ+1 − μ−1| > θ then
6 Calculate the intersection points of two normal distributions;
7 Select the intersection point located in the range of [μ1, μ2] as p
8 Set Tij = p

9 else
10 Set Tij = 1

11 return T

where δ and θ are two predefined positive values. Also, p is the intersection point
of two distributions, locating in the range of [μ1, μ2]. The term KL(N+1,N−1)
denotes the Kullback-Leibler divergence that computes the similarity between
two distributions, and can be defined as:

KL(N+1,N−1) = log(
σ+1

σ−1
) +

(σ−1)
2

+ (μ1 − μ2)
2

2(σ+1)2
− 1

2
. (2)

Therefore, the proposed WDT method can adaptively determine an optimal
threshold for each FC in FC network. Thus, we can obtain a threshold matrix
T for the whole FC network, which reflects the diversity of FCs between differ-
ent pairs of brain regions. Algorithm 1 summaries the detailed process of the
proposed WDT method for adaptive thresholding of brain FC networks.

3 Experiments

Experimental Setup: To evaluate the effectiveness of our WDT method, we
test the classification performance of thresholded FC networks in brain disease
diagnosis. Specifically, we first extract two kinds of network measures [7] (i.e.,
local clustering coefficients and community structure) from thresholded FCNs as
features of each subject. The clustering coefficient features reflect the prevalence
of clustered connectivity around individual brain region. And the community
structure features characterize the appearance of densely connected groups of
brain regions, with sparser connections between groups.

We first compare our WDT method with two existing methods, i.e., single-
threshold based method (called ST) and percentage-based threshold method
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Fig. 3. The accuracy of all four methods in four classification tasks w.r.t.different
thresholds or percentages of connections when using (top row) clustering coefficient
features and (bottom row) community structure features.

(called PT). In the ST and PT methods, we extract the local clustering coeffi-
cient features and community structure features for classification, respectively.
For the fair comparison, we compute the best performance of ST with the thresh-
old ranging from 0.01 to 0.99 (step size: 0.01), and compute the best performance
of PT with the percentage from 1% to 99% (step size: 1%). We also compare
WDT with the baseline method without network thresholding. That is, we
directly extract the weighted network measures [7] (i.e., weighted clustering
coefficients and weighted modularity) from the FC networks constructed using
PCCs as features for classification. In four methods (i.e., WDT, ST, PT and
baseline), we perform feature selection using the standard t-test algorithm (with
p-value less than 0.05) to select informative features, followed by a linear support
vector machine (SVM) with a default parameter (i.e., C = 1) for classification.

To evaluate the performance of different methods, we conduct four classifi-
cation tasks, i.e., (1) MCI vs. NC, (2) eMCI vs. lMCI, (3) eMCI vs. NC, and
(4) ADHD vs. NC classification, by using a 10-fold cross-validation. We evalu-
ate the performance via four metrics, including accuracy (i.e., the percentage of
subjects that are correctly classified), sensitivity (i.e., the percentage of patients
that are correctly classified), specificity (i.e., the percentage of NC that are cor-
rectly classified), and the area under the receiver operating characteristic (ROC)
curve (AUC).

Results and Analysis: Tables 1 and 2 present the results achieved by four
methods in four classification tasks using two types of network measures, respec-
tively. As can be seen from Tables 1 and 2, the proposed WDT method usually
outperforms the competing methods in four tasks. For instance, the proposed
WDT method, respectively, achieves the accuracy of 72.4%, 71.7%, 68.1% and
65.4% for four classification tasks (i.e., MCI vs. NC, eMCI vs. lMCI, eMCI vs.
NC and ADHD vs. NC classifications) when using clustering coefficient features,
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while the best accuracies obtained by the competing methods are 69.7%, 67.9%,
67.3% and 64.5%, respectively. Besides, the proposed WDT method, respec-
tively, achieves the accuracy of 69.1%, 68.8%, 74.6% and 66.6% for four classifi-
cation tasks when using community structure features, while the best accuracies
obtained by the competing methods are of 68.4%, 68.0%, 70.1% and 64.9%,
respectively. These results suggest the efficacy of our WDT method.

Table 1. Performance of all four methods in four classification tasks when using clus-
tering coefficient features. ACC: ACCuracy; SEN: SENsitivity; SPE: SPEcificity.

Method MCI vs. NC lMCI vs. eMCI eMCI vs. NC ADHD vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Baseline 65.1 100.0 0.0 51.0 55.6 46.5 53.6 55.0 53.6 23.3 76.8 52.0 57.0 56.1 57.6 53.2

ST 69.7 85.9 38.0 60.9 67.9 80.4 54.0 71.3 58.9 46.5 67.9 58.1 64.5 55.1 72.0 66.6

PT 67.8 82.8 38.0 61.1 62.2 60.7 64.0 63.0 67.3 69.8 64.3 63.3 60.8 51.0 68.6 63.1

WDT (Ours) 72.4 83.8 50.0 62.0 71.7 78.6 64.0 66.9 68.1 51.2 80.4 61.4 65.4 59.2 70.3 60.6

Table 2. Performance of all four methods in four classification tasks when using com-
munity structure features. ACC: ACCuracy; SEN: SENsitivity; SPE: SPEcificity.

Method MCI vs. NC lMCI vs. eMCI eMCI vs. NC ADHD vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Baseline 66.4 100.0 0.0 50.0 59.5 57.1 62.0 60.0 58.9 20.9 87.5 46.8 56.4 50.0 61.9 55.2

ST 67.7 98.0 8.0 61.2 66.0 71.4 60.0 62.8 63.9 60.5 66.1 64.7 62.7 61.2 63.6 60.7

PT 68.4 99.0 8.0 54.1 68.0 66.1 70.0 67.8 70.1 55.8 80.4 66.9 64.9 39.8 85.6 63.2

WDT (Ours) 69.1 99.0 10.0 52.6 68.8 73.2 64.0 64.7 74.6 48.8 92.9 70.4 66.6 52.0 78.8 60.5

Furthermore, Figure 3 plots classification accuracies of two competing meth-
ods (i.e., ST and PT) with different thresholds or percentages of connections.
For comparison, in Fig. 3, we also present the results achieved by our WDT
method and the baseline method. As can be seen from Fig. 3, the proposed
WDT method outperforms the competing methods with most of thresholds or
percentages, suggesting the effectiveness of the proposed method. In addition,
from Fig. 3, we can see that the accuracy of two competing methods (i.e., ST and
PT) are largely affected by different thresholds or percentages of connections in
four classification tasks, which indicates the selection of threshold or percentage
is very important for characterizing network properties and subsequent classi-
fication. These results also demonstrate the advantage of WDT in adaptively
determining the optimal threshold for FC network analysis.

4 Conclusion

In this paper, we proposed a weight distribution based thresholding (WDT)
method for the analysis of brain functional connectivity networks. Different from
existing methods that threshold the whole networks by using a predefined value
or percentage of connections, our WDT method can adaptively determine an
optimal threshold for FC between each pair of brain regions, thus preserving the
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diversity of temporal correlations between different brain regions. Experiment
results on both ADNI and ADHD-200 datasets demonstrate that the proposed
method can significantly improve the performance of disease classification com-
pared with existing thresholding methods.
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