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Abstract

Brain network analysis can help reveal the pathological ba-
sis of neurological disorders and facilitate automated diag-
nosis of brain diseases, by exploring connectivity patterns
in the human brain. Effectively representing the brain net-
work has always been the fundamental task of computer-
aided brain network analysis. Previous studies typically uti-
lize human-engineered features to represent brain connectiv-
ity networks, but these features may not be well coordinated
with subsequent classifiers. Besides, brain networks are of-
ten equipped with multiple hubs (i.e., nodes occupying a cen-
tral position in the overall organization of a network), pro-
viding essential clues to describe connectivity patterns. How-
ever, existing studies often fail to explore such hubs from
brain connectivity networks. To address these two issues, we
propose a Connectivity Network analysis method with dis-
criminative Hub Detection (CNHD) for brain disease diag-
nosis using functional magnetic resonance imaging (fMRI)
data. Specifically, we incorporate both feature extraction of
brain networks and network-based classification into a uni-
fied model, while discriminative hubs can be automatically
identified from data via ℓ1-norm and ℓ2,1-norm regularizers.
The proposed CNHD method is evaluated on three real-world
schizophrenia datasets with fMRI scans. Experimental results
demonstrate that our method not only outperforms several
state-of-the-art approaches in disease diagnosis, but also is
effective in automatically identifying disease-related network
hubs in the human brain.

Introduction
Recent advances in network analysis have allowed new in-
sights for our understanding of complex networks and in-
teractions (i.e., connectivity patterns) within each network.
A human brain can be modeled as a complex network, con-
taining a number of structurally/functionally interconnected
brain regions (Power et al. 2010; Liu, Kong, and Ragin
2017). Generally, a brain network (a.k.a., connectome) can
be characterized by a set of nodes and edges, where nodes
represent regions-of-interest (ROIs) in the brain and edges
denote the connectivity strength or correlation between brain
regions. The characterization of brain networks can not only
help uncover the pathological basis of brain disorders, but
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also lead to the development of biomarkers that quantify re-
organizational mechanisms of brain diseases (Fox and Gre-
icius 2010; Yang et al. 2015). Brain connectivity networks
derived from resting-state functional magnetic resonance
imaging (fMRI) scans have shown to be effective in re-
vealing functional connectivity patterns of the brain (Sporns
2012; Bolton et al. 2017; Liu, Kong, and Philip 2017). In
computer-aided brain network analysis, it remains a funda-
mental but challenging task to effectively represent func-
tional brain networks constructed on fMRI data.

Existing fMRI-based studies first extract human-
engineered features (e.g., clustering coefficient) to represent
brain connectivity networks, and then feed these features
to a pre-defined machine learning model for classi-
fication (Shervashidze et al. 2011; Wee et al. 2012;
Jie et al. 2014). Since feature extraction and classifier
training are treated as stand-alone tasks, the hetero-
geneity between features and classifiers would lead to
a sub-optimal performance in brain disease diagno-
sis.The network embedding technology (Cao et al. 2017;
Liu et al. 2018) is applied to brain network analysis by
performing feature extraction and classifier training jointly.
However, features of a brain network in these methods are
usually manifested in the latent representation space, thus
lacking of good interpretation of brain connectivity patterns.

On the other hand, network hubs have proven to be vul-
nerable to pathogenic processes of brain disorders (Dai, Bi,
and He 2015), by effectively revealing communication and
information integration across different brain regions. Here,
the term “hub” refers to a particular node that occupies a
central position in a brain connectivity network, reflecting
the global structure of this network (Heuvel, Sporns, and
Olaf 2013; He et al. 2016). Several network hubs have been
shown to reveal significant abnormalities in brain connectiv-
ity networks of patients with schizophrenia and Alzheimer’s
disease (Huang et al. 2011; Stam 2014). Intuitively, explor-
ing such hubs could bring prior knowledge for modeling
global structure of brain networks, thus promoting the learn-
ing performance of network-based brain disease diagnosis.
However, existing studies cannot effectively identify net-
work hubs from brain connectivity networks.

To address these issues, in this paper, we propose a Con-
nectivity Network analysis method with discriminative Hub
Detection (CNHD) for brain disease diagnosis using fMRI
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scans. Specifically, we first construct functional connec-
tivity networks based on fMRI scans, with each subject
corresponding to a specific network. Then, we develop a
functional connectivity network based classification model,
where both feature extraction and classifier training are in-
corporated into a unified framework. In particular, discrimi-
native hubs can be automatically identified from brain con-
nectivity networks, via l1-norm and l2,1-norm regulariza-
tion terms in our CNHD model. To solve the proposed non-
convex optimization problem, we develop an alternating di-
rection method of multipliers (ADMM) (Boyd et al. 2011)
algorithm. We evaluate the proposed method on three real
schizophrenia datasets with fMRI scans, with experimental
results demonstrating its effectiveness in both tasks of brain
disease diagnosis and network hub detection.

The major contributions of this work are three-fold. First,
we develop a functional connectivity network based classifi-
cation model for brain disease diagnosis, with feature extrac-
tion and model training incorporated into a unified frame-
work. Second, we propose to detect discriminative hubs
from brain networks via both l1-norm and l2,1-norm based
regularizers. To our knowledge, this is the first attempt to in-
corporate hub detection and classifier training into a unified
model for functional connectivity network analysis. Third,
we evaluate the proposed method on three real datasets, with
results demonstrating the superiority of our method.

Related Work
Network-based Brain Disease Diagnosis Many network-
based classification methods have been proposed for brain
disease diagnosis. Based on different network representa-
tions, these methods can be roughly divided into two cate-
gories, including 1) topology-based representation methods,
and 2) subgraph-based representation methods.

Topology-based representation methods typically directly
compute global or local similarity between a pair of brain
connectivity networks, using graph kernel (Jie et al. 2014) or
clustering coefficient (CC) (Wee et al. 2012). The obtained
similarities are used as feature representation of different
networks and then fed into a pre-defined classifier (e.g., sup-
port vector machines, SVM) for brain disease diagnosis. For
example, Jie et al. (Jie et al. 2014) utilize the topology-based
Weisfeiler-Lehman graph kernel (Shervashidze et al. 2011)
to measure the similarity between paired connectivity net-
works, followed by an SVM classifier for mild cognitive im-
pairment identification (with graph kernel based representa-
tion as features of networks). Wee et al. (Wee et al. 2012)
extract weighted local clustering coefficients between each
ROI (w.r.t., a node) and the remaining ROIs as features to
quantify the cliquishness of each ROI.

Subgraph-based representation methods usually first mine
a set of discriminative subgraphs (with different pruning
rules) to represent each network, and then resort to a par-
ticular classifier for disease diagnosis with such subgraph
features as input data. For example, Zhang et al. (Zhang et
al. 2018) design an ordinal pattern based network descriptor
to mine frequent subgraphs for disease classification. This
method can simultaneously modeling both weight informa-
tion (i.e., connectivity strength) and ordinal relationship of

weighted edges in a brain connectivity network while re-
lying on the subsequent SVM for final prediction. Kong et
al. (Kong et al. 2013) develop a subgraph feature selection
method via dynamic programming, followed by an SVM for
network-based disease diagnosis. To utilize the complemen-
tary information of multiple views, Cao et al. (Cao et al.
2016) introduce a subgraph mining algorithm for disease di-
agnosis by using multiple side views (e.g., cognitive mea-
sures) as guidance information.

It’s worth noting that both topology-based and subgraph-
based representation methods usually first extract partic-
ular network representation from brain connectivity net-
works, and then reply on pre-defined classifiers (e.g., SVM)
for brain disease diagnosis. That is, feature extraction and
model learning are treated as two separate tasks in these
methods, so potential heterogeneity between features and
classifiers may degrade the final performance of these meth-
ods. To address this issue, the network embedding technol-
ogy (Cao et al. 2017; Liu et al. 2018) has been proposed for
deriving representations from brain connectivity networks,
attempting to integrate network feature learning and clas-
sifier training into a unified optimization problem. For ex-
ample, Cao et al. (Cao et al. 2017) propose a tensor-based
brain network embedding (t-BNE) method for automated di-
agnoses of anxiety disorder, by fusing the processes of ten-
sor factorization and classifier learning on electroencephalo-
gram brain networks. Liu et al. (Liu et al. 2018) develop a
multi-view multi-graph embedding (M2E) method for mul-
tiple modalities brain network clustering analysis on hu-
man immunodeficiency virus and bipolar disorder. Although
good performance can be produced by network embedding,
those derived network features are often manifested in latent
representation spaces and lack interpretability.

Hub Detection from Networks In the field of network
analysis, several studies have recognized that exploring the
hub structure in networks helps to better understand com-
plex networks (Ruan and Parthasarathy 2014; He et al. 2016;
Ma et al. 2017). For instance, to simultaneously identify
community and structural role (e.g., hub nodes) assignments
in social networks, Ruan et al. (Ruan and Parthasarathy
2014) employ a principled approach to guide the hub de-
tection process in a nonparametric fashion. He et al. (He et
al. 2016) design a harmonic modularity (HAM) method to
simultaneously detect potential communities and the top-k
hub nodes, using topological structures of a social network.
Ma et al. (Ma et al. 2017) propose an auto-weighted multi-
view graph embedding method with hub detection (MVGE-
HD) for brain network clustering, based on multi-modality
data (i.e., fMRI and diffusion tensor imaging). This method
aims to learn a unified graph embedding across multiple
views while reducing the potential influence of hubs on
blurring the boundaries between node clusters in the net-
work, and thus network hubs can be automatically identified
from data. However, these methods cannot jointly identify
discriminative hubs from functional brain connectivity net-
works and learn network-based classification models.
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Methodology
In this section, we first introduce notations, and then present
the proposed CNHD method in detail. We also describe our
alternating optimization algorithm for solving the proposed
problem and analyze its computational complexity.

Notations We use lower case letters (e.g., x), bold lower
case letters (e.g., x), and bold capital letters (e.g., X) to de-
note scalars, vectors, and matrices, respectively. For a matrix
X, its (i, j)-th entry is denoted as xi,j and its i-th column is
denoted as xi. Denote tr(·) as the trace of a matrix, which
is defined to be the sum of the diagonal elements. The trans-
pose of X is denoted as XT , and its Frobenius norm is de-
noted as ∥X∥F . Also, the ℓ1-norm of X ∈ Rn×m is defined
as ∥X∥1 =

∑n
i=1

∑m
j=1 |xi,j |, while its ℓ2,1-norm is de-

noted as ∥X∥2,1 =
∑n

i=1

√∑m
j=1 x

2
i,j . For functional con-

nectivity networks derived from different subjects, we define
the same set of M nodes, with each node corresponding to
a particular ROI in the brain. Each network can be repre-
sented by its adjacency matrix A ∈ RM×M . For simplic-
ity, we only consider undirected symmetric networks (i.e.,
Ai,j = Aj,i) without self-loops (i.e., Ai,i = 0).

Connectivity Network Analysis with Discriminative
Hub Detection (CNHD) Denote a network set as
{(A(1), Y1), (A

(2), Y2), · · · , (A(N), YN )}, containing N
training subjects and M nodes (i.e., A(n) ∈ RM×M ). Note
that each network is constructed based on the fMRI scan of
a particular subject. We denote the class label of the network
A(n) as Yn, with Yn = 1 denoting the n-th subject is a pa-
tient with a particular brain disease, while Yn = −1 repre-
senting that this subject is a normal control (NC). Our goal is
to learn a predictor to identify patients from the whole popu-
lation based on their brain connectivity networks. A general
form of network-based linear predictor can be described as

argmin
Θ

{ℓ(Θ) + Ω(Θ)}, (1)

where ℓ(Θ) = 1
N

∑N
n=1 ℓ̃(Yn,A

(n);Θ) is an empirical
loss on the training set, and Ω(Θ) is a regularization term.
Here, the predictor Θ ∈ RM×M is a symmetric matrix, i.e.,
Θ = ΘT . Also, the diagonal elements of Θ are set to be
zeros, i.e., diag(Θ) = 0. Although many types of loss func-
tions can be used, for the sake of optimization, we mainly
consider the logic loss function in this work:

ℓ̃(Yn,A
(n);Θ, b) = log(1 + exp(−Yn(tr(Θ

TA(n)) + b))),
(2)

where b is a bias term. In Eq. (2), we incorporate the classi-
fier learning of Θ into the process of learning network repre-
sentation (i.e., A(n)). In this way, the weight matrix Θ and
the network data A(n) can interact with each other in the
unified learning framework.

Furthermore, to explicitly model the hub structure in a
network, we decompose the weight matrix Θ into the sum
of two components Z ∈ RM×M and V ∈ RM×M (Tan et
al. 2014; Gong, Ye, and Zhang 2012). As shown in Figure 1,
Z is a sparse symmetric matrix, and V is a matrix whose
columns are either entirely zeros or entirely non-zeros. The

sparse entries of Z represent edges between non-hub nodes,
and the non-zero columns of V are regarded as hub nodes.
Formally, our CNHD model is formulated as:

arg min
Θ,b,Z,V

1

N

N∑
n=1

log(1 + exp(−Yn(tr(Θ
TA(n)) + b)))

+ λ∥Z∥1 + β∥V∥1 + γ∥V∥2,1
s.t. Θ = Z+V,Z = ZT ,V = VT ,

diag(Θ) = 0
(3)

where λ, β and γ are nonnegative parameters. Sparsity on
Z is encouraged by its ℓ1-norm. The ℓ2,1-norm in Eq. (3) is
designed to induce group sparsity (Yuan and Lin 2006) us-
ing M groups, with each group denoting a specific columns
of V that corresponds to an ROI. Due to the constraint of
V = VT , there will be overlap among these M groups.
That is, the (i, j)-th element of V is contained in both the
i-th and j-th groups. With overlapping groups, the group
lasso penalty can estimate whose support is the complement
of the union of groups, thus helping identify the most dis-
criminative hub nodes. Besides, the ℓ1-norm of V in Eq. (3)
promotes sparsity inside the group, allowing us to select a
subset of edges for a hub node.

Figure 1: Illustration of a symmetric matrix Θ decomposed
into Z+V for CNHD, where Z is sparse and V is a matrix
whose columns are either entirely zeros (w.r.t., non-hub re-
gions) or not entirely zeros (w.r.t., hub regions). White rep-
resents zero entry, blue denotes non-zero element, and red
denotes non-zero element due to two hubs (red columns).

Optimization Algorithm It is difficult to jointly optimize
all variables in Eq. (3) due to its non-convex nature. Here, we
propose to solve the above problem using an alternating di-
rection method of multipliers (ADMM) algorithm. ADMM
is an attractive algorithm for solving this problem, because
it allows us to decouple the terms in Eq. (3) that are difficult
to be optimized directly.

To facilitate the optimization of Eq. (3), we first introduce
some relaxation variables. Specifically, we denote ∥V∥1 as
V1, ∥V∥2,1 as V2, VT as V3, ∥Z∥1 as Z1, and ZT as Z2.
Hence the constraints in Eq. (3) can be rewritten as:

Θ = Z+V,V = VT = V3,Z = ZT = Z2,

Z = Z1,V = V1,V = V2, diag(Θ) = 0.
(4)

Then we can solve the Eq. (3) by minimizing the follow-
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ing Augmented Lagrangian function L, which is defined as:

L = ℓ(Θ) + λ∥Z1∥1 + β∥V1∥1 + γ∥V2∥2,1
+ tr[UT

1 (Z− Z1)] + tr[UT
2 (V −V1)]

+ tr[UT
3 (V −V2)] + tr[UT

4 (V
T −V3)]

+ tr[UT
5 (Z

T − Z2)] + tr[UT
6 (Θ−V − Z)]

+ tr[UT
7 (V −V3)] + tr[UT

8 (Z− Z2)]

+
µ

2
(∥Z− Z1∥2F + ∥V −V1∥2F + ∥V −V2∥2F

+ ∥VT −V3∥2F + ∥ZT − Z2∥2F + ∥Θ−V − Z∥2F
+ ∥V −V3∥2F + ∥Z− Z2∥2F ),

(5)
where Ui (i ∈ [1, 2, · · · , 8]) is Lagrange multiplier and
µ > 0 is a penalty parameter. ∥·∥F denotes the matrix Frobe-
nius norm. To find a minimal point for L, we alternatively
update for each of variable, while keeping the other vari-
ables fixed. We define the t-th iteration optimized variables
as Θt,Zt,Vt,Z1,t,Z2,t,V1,t,V2,t,V3,t and bt. Then, we
can achieve the sub-solution at the t+ 1 (t ≥ 0)-th iteration
as:

Update Θ:

Θt+1 =
∂ℓ

∂Θ
+U6 +

µ

2
[2Θ− 2(Vt + Zt)], (6)

where ∂ℓ
∂Θ = 1

N

∑N
n=1

exp[−Yn(tr(Θ
TA(n))+bt)]·[−YnA

(n)]
1+exp[−Yn(tr(ΘTA(n))+bt)]

.
Then the minimum value of Θt+1 can be computed by gra-
dient descent.

Update Z:

Zt+1 =
1

4µ
(µG1 +G2), (7)

where G1 = Z1,t + ZT
2,t + Θt − Vt + Z2,t and G2 =

U6 −U1 −UT
5 −U8.

Update V:

Vt+1 =
1

5µ
[µG3 +G4], (8)

where G3 = V1,t + V2,t + VT
3,t + Θt − Zt + V3,t and

G4 = U6 −U2 −U3 −UT
4 −U7.

Update Z1:

Z1,t+1 = argmin
Z1

λ

µ
∥Z1∥1 +

1

2
∥Z1 − (Zt +

U1

µ
)∥2F .

(9)
According to the shrinkage operator (Yang et al. 2009),

the above problem has the following closed form solution:

Z1,t+1 = Sλ
µ
(Zt +

U1

µ
), (10)

where S(η)[x] = sign(x)max(|x| − η, 0).

Update Z2:

Z2,t+1 =
1

2µ
[U5 + µZT

t +U8 + µZt]. (11)

Update V1:

V1,t+1 = argmin
V1

β

µ
∥V1∥1 +

1

2
∥V1 − (Vt +

U2

µ
)∥2F .

(12)
Problem (12) can also be solved by using the shrinkage op-
erator (Yang et al. 2009) in the same way as problem (10).

Update V2:

V2,t+1 = argmin
V2

γ

µ
∥V2∥2,1 +

1

2
∥V2 − (Vt +

U3

µ
)∥2F ,

(13)
which is easily addressed with (Yuan and Lin 2006) and the
closed form solution can be rewritten as:

[V2,t+1]:,i =

⎧⎪⎨⎪⎩
∥Q:,i∥2 − γ

µ

∥Q:,i∥2
Q:,i, if ∥Q:,i∥2 >

γ

µ
;

0, otherwise.
(14)

where Q = Vt +
U3

µ and [V2,t+1]:,i is the i-th column of
V2,t+1.

Update V3:

V3,t+1 =
1

2µ
[U4 +U7 + µVT

t + µVt]. (15)

Update b:

∂ℓ

∂b
=

1

N

N∑
n=1

exp[−Yn(tr(Θ
T
t A

(n)) + b)] · [−Yn]

1 + exp[−Yn(tr(ΘT
t A

(n)) + b)]
. (16)

Then it is easy to compute bt+1 via gradient descent.

Update multipliers: Multipliers U1,U2,U3,U4,U5,
U6,U7,U8 and parameter µ are updated by using (17):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = U1 + µ(Zt − Z1,t)

U2 = U2 + µ(Vt −V1,t)

U3 = U3 + µ(Vt −V2,t)

U4 = U4 + µ(VT
t −V3,t)

U5 = U5 + µ(ZT
t − Z2,t)

U6 = U6 + µ(Θt −Vt − Zt)

U7 = U7 + µ(Vt −V3,t)

U8 = U8 + µ(Zt − Z2,t)

µ = min(µρ, µmax)

(17)

The overall algorithm is outlined in Algorithm 1. Those
parameters µ, ρ, µmax, and ε are set empirically, while other
balanced parameters α, β and γ are tuned in the experiment.

Computational Complexity The major computational
complexity of Algorithm 1 lies in Step 2 and Step 10 that
contain gradient derivation. We assume the number of iter-
ation for ADMM and gradient descent is τ , and the com-
putational complexity of Step 2 and Step 10 is τNO(M3).
Thus, the overall computational complexity of Algorithm 1
is τ2NO(M3), where M is usually a fixed number (e.g., 90)
of brain regions. This indicates that the time cost of the pro-
posed optimization algorithm will increase with the increase
of the number of samples and optimization iterations.
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Algorithm 1 Solving Problem (5) by ADMM
Require: A,Y, α, β and γ;

init: Θ = 0, b = 0,Z = 0,V = 0,Z1 = 0,Z2 =
0,V1 = 0,V2 = 0,V3 = 0,U1 = 0,U2 = 0,U3 =
0,U4 = 0,U5 = 0,U6 = 0,U7 = 0,U8 = 0, µ =
10−5, ρ = 1.1, µmax = 107, ε = 10−7;

1: while not converged do
2: Fix the other variables and update Θ by solving (6);
3: Fix the other variables and update Z by solving (7);
4: Fix others variables and update V by solving (8);
5: Fix the other variables and update Z1 by solving (9);
6: Fix the other variables and update Z2 by solving (11);
7: Fix the other variables and update V1 by solving (12);
8: Fix the other variables and update V2 by solving (13);
9: Fix the other variables and update V3 by solving (15);

10: Fix the other variables and update b by solving (16);
11: Update the multipliers and parameters by (17);
12: Check the convergence conditions

∥Z− Z1∥∞ < ϵ; ∥V −V1∥∞ < ϵ;
∥V −V2∥∞ < ϵ; ∥VT −V3∥∞ < ϵ;
∥ZT − Z2∥∞ < ϵ; ∥Θ− (V + Z)∥∞ < ϵ;
∥V −V3∥∞ < ϵ; ∥Z− Z2∥∞ < ϵ.

13: end while
Ensure: Θ, b,Z,V

Experiments
Datasets To evaluate the effectiveness of our CNHD
method, we perform experiments on three real schizophre-
nia (SZ) datasets with fMRI scans, collected from the Affil-
iated Nanjing Brain Hospital of Nanjing Medical University
(NBH) containing 24 SZ patients and 21 normal controls
(NCs), the Center for Biomedical Research Excellence (CO-
BRE) having 67 SZ patients and 53 NCs1, and the National
Taiwan University Hospital (Taiwan) including 69 SZ pa-
tients and 62 NCs. We first preprocess fMRI data using Sta-
tistical Parametric Mapping software2 (SPM8), and detailed
procedures follow previously studies (Wang et al. 2017;
Li et al. 2017). We then partition the whole brain into 90
pre-defined ROIs based on the anatomical automatic label-
ing (AAL) template3. For each ROI, we compute its mean rs-
fMRI time series by averaging the gray matter (GM) masked
blood oxygen-level dependent (BOLD) signals among all
voxels within this ROI. Finally, we compute Pearson corre-
lation coefficients to build functional connectivity between
a pair of ROIs. Thus, a functional connectivity network is
generated for each subject, with each node corresponding to
a particular ROI and each edge denoting the correlation be-
tween a pair of ROIs. Given M = 90 ROIs, we can obtain a
90× 90 functional connectivity network for each subject.

Competing Methods We first compare the proposed
CNHD model with a baseline approach, i.e., Lasso (Tib-
shirani 2011). Besides, we also compare CNHD with six
state-of-the-art methods, including 4 topology-based rep-

1http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html
2https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
3http://www.gin.cnrs.fr/en/tools/aal-aal2/

resentation approaches (i.e., CC (Wee et al. 2012), Aver-
age Degree (Dai and He 2014), WL Graph Kernel (Sher-
vashidze et al. 2011), and t-BNE (Cao et al. 2017)), and
2 subgraph-based representation approaches (i.e., Graph
Boosting (Kudo, Maeda, and Matsumoto 2005), and Ordi-
nal Pattern (Zhang et al. 2018)).

• Lasso: The Lasso (Tibshirani 2011) method first selects a
discriminative subset of features from the vectorized rep-
resentation of a brain network. Thus, each network is con-
verted into a feature vector in this method.

• Clustering Coefficient (CC): The CC (Wee et al. 2012)
method extracts local clustering coefficients as features of
brain network, by measuring the degree to which nodes in
a network tend to cluster together. Similar to Lasso, each
network is converted into a feature vector in this method.

• Average Degree (Avg-DE): The Avg-DE (Dai and He
2014) method reflects the average number of connections
any network node may have, which measures the overall
level of brain network connectivity. With Avg-DE, each
network can be represented as a scalar.

• WL Graph Kernel (WLGK): The WLGK (Shervashidze
et al. 2011) method measures the similarity of networks
based on graph isomorphism testing. That is, each net-
work is represented by a feature vector corresponding to
the similarity between this network with the other ones.

• Tensor-based Brain Network Embedding (t-BNE):
The t-BNE (Cao et al. 2017) method embeds each network
to a vector via tensor factorization, and the new vectorized
features are used for classification.

• Graph Boosting (GB): The GB (Kudo, Maeda, and Mat-
sumoto 2005) method first mines subgraphs from each
network as features, and then learns subgraph-based de-
cision stumps as weak learners. Finally, a Boosting algo-
rithm is used for network classification.

• Ordinal Pattern (OP): The OP (Zhang et al. 2018)
method first mines informative subgraphs via ordinal pat-
terns that frequently appear in network sets, and then ex-
tracts features based on the selected ordinal patterns for
representing the original network.

Since five methods (i.e., Lasso, CC, Avg-DE, WLGK and
OP) can only be used for extracting network representation,
we employ the linear SVM as the base classifier in these
methods for disease classification. Here, we resort to the
LIBSVM toolbox4 with a default penalty parameter (i.e.,
C = 1). Similar to CNHD, GB and t-BNE can simultane-
ously perform feature extraction and classifier training.

Evaluation Metric We employ seven metrics to evaluate
the performance of different methods, including classifica-
tion accuracy (ACC), sensitivity (SEN), specificity (SPE),
balanced accuracy (BAC), positive predictive value (PPV),
negative predictive value (NPV), and the area under the
receiver operating characteristic (ROC) curve (AUC). De-
note TP, TN, FP and FN as True Positive, True Negative,

4https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Table 1: Network-based disease classification results achieved by eight different methods on three datasets.
Dataset Method ACC (%) SEN (%) SPE (%) AUC (%) BAC (%) PPV (%) NPV (%)

NBH

Lasso 72.88 ± 0.59 67.50 ± 1.12 80.00 ± 2.09 80.50 ± 1.61 73.75 ± 0.69 82.00 ± 1.75 69.17 ± 0.56

CC 62.69 ± 1.95 77.50 ± 2.56 48.00 ± 1.82 72.00 ± 1.77 62.75 ± 1.94 61.33 ± 1.26 69.05 ± 3.13

Avg-DE 58.85 ± 0.85 56.25 ± 1.77 68.75 ± 3.26 71.75 ± 1.60 60.00 ± 1.05 73.33 ± 2.53 54.54 ± 0.44

WLGK 61.35 ± 1.13 55.00 ± 1.12 70.00 ± 3.26 72.25 ± 1.23 62.50 ± 1.25 73.33 ± 2.53 56.44 ± 0.71

t-BNE 81.25 ± 2.40 87.50 ± 2.50 75.00 ± 2.89 65.94 ± 2.19 81.25 ± 2.39 79.17 ± 2.50 87.50 ± 2.50

GB 75.00 ± 1.25 68.33 ± 1.61 75.00 ± 4.33 68.33 ± 2.32 71.67 ± 1.77 80.00 ± 3.46 71.11 ± 0.77

OP 83.66 ± 0.59 78.13 ± 2.14 88.75 ± 1.32 94.37 ± 0.66 83.44 ± 0.59 91.87 ± 0.99 81.67 ± 1.37

CNHD 90.96 ± 1.04 92.50 ± 1.12 90.00 ± 1.37 98.25 ± 0.27 91.25 ± 1.05 91.00 ± 1.25 91.67 ± 1.18

COBRE

Lasso 65.03 ± 0.81 63.23 ± 1.76 66.77 ± 2.32 76.97 ± 0.34 65.00 ± 0.67 63.25 ± 1.39 71.03 ± 0.72

CC 62.02 ± 0.90 57.54 ± 1.71 59.44 ± 0.70 63.79 ± 1.20 58.49 ± 0.94 63.33 ± 2.47 61.34 ± 0.65

Avg-DE 59.25 ± 1.73 43.69 ± 2.31 71.59 ± 2.90 70.51 ± 1.73 57.64 ± 1.64 63.78 ± 2.63 60.15 ± 1.67

WLGK 60.68 ± 1.59 48.77 ± 2.18 70.05 ± 2.83 72.31 ± 1.74 59.41 ± 1.50 65.37 ± 2.42 61.99 ± 1.63

t-BNE 69.91 ± 1.22 75.38 ± 0.92 65.51 ± 1.58 53.53 ± 2.19 70.45 ± 1.19 64.55 ± 1.24 76.19 ± 1.21

GB 71.68 ± 0.22 77.54 ± 0.56 64.31 ± 0.52 72.82 ± 0.33 70.92 ± 0.20 73.45 ± 0.26 69.61 ± 0.46

OP 69.78 ± 0.46 61.38 ± 1.39 76.21 ± 0.96 68.38 ± 0.64 68.79 ± 0.51 67.62 ± 0.63 72.15 ± 0.50

CNHD 73.11 ± 0.38 64.31 ± 0.52 80.21 ± 0.91 78.67 ± 0.65 72.26 ± 0.35 72.84 ± 0.99 74.07 ± 0.20

Taiwan

Lasso 67.46 ± 0.48 70.59 ± 1.18 64.29 ± 0.58 72.61 ± 0.40 67.44 ± 0.44 68.59 ± 0.26 67.27 ± 0.85

CC 66.81 ± 0.71 75.70 ± 1.15 55.71 ± 2.18 72.95 ± 1.00 65.71 ± 0.80 65.25 ± 0.96 76.00 ± 1.57

Avg-DE 62.01 ± 0.75 61.72 ± 1.52 62.62 ± 0.85 71.90 ± 0.46 62.17 ± 0.72 64.36 ± 0.63 60.71 ± 0.95

WLGK 61.37 ± 0.70 63.62 ± 1.57 59.29 ± 1.13 70.67 ± 0.57 61.45 ± 0.66 63.37 ± 0.49 60.64 ± 1.05

t-BNE 69.24 ± 0.40 71.04 ± 0.64 67.38 ± 0.93 78.65 ± 0.23 69.21 ± 0.41 71.00 ± 0.62 67.90 ± 0.36

GB 72.28 ± 0.44 78.01 ± 1.24 65.95 ± 0.76 80.01 ± 0.31 71.98 ± 0.41 71.81 ± 0.37 74.63 ± 0.94

OP 75.64 ± 0.29 78.73 ± 0.35 70.95 ± 0.42 82.17 ± 0.49 74.66 ± 0.18 75.02 ± 0.25 74.83 ± 0.33

CNHD 80.44 ± 0.57 84.52 ± 0.56 75.95 ± 1.11 84.80 ± 0.58 80.24 ± 0.59 80.22 ± 0.77 81.65 ± 0.65
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Figure 2: The weight maps of network predictor learned by CNHD on three datasets, (a) NBH, (b) COBRE, and (c) Taiwan.

False Positive, and False Negative, respectively. These met-
rics is defined as follows: ACC = (TP + TN)/(TP +
TN + FP + FN), SEN = TP/(TP + FN), SPE =
TN/(TN + FP ), BAC = (SEN + SPE)/2, PPV =
TP/(TP + FP ), and NPV = TN/(TN + FN). For all
these metrics, higher values indicate better performance.

Experimental Settings We employ a cross-validation
(CV) strategy to evaluate the performance of different meth-
ods. Specifically, we first randomly divide the data into 5
folds. Then, we alternatively choose 4 folds as the train-
ing set and the rest as the testing set, until all 5 folds have
been used as the testing set. The mean and standard devia-
tion of classification results are recorded for each method.
To select optimal parameters of our approach and all com-
peting methods, we further perform an inner 5-fold CV on
the training data. That is, in each fold of 5-fold CV, we find
the optimal parameters for each method via cross-validation

on the training subset. Note that no testing data is used in
such inner CV process. Parameters in six competing meth-
ods are set as suggested in their papers. For the proposed
CNHD method, the parameters λ, β and γ are selected from
{10−4, 10−3, · · · , 102} via inner CV.

Experimental Results and Analysis
Results of Brain Disease Classification Table 1 reports
the disease classification results achieved by eight different
methods on three datasets. From Table 1, one could have the
following observations. First, in terms of the AUC value, our
CNHD method consistently outperforms seven competing
methods. For example, CNHD produces an AUC of 98.25%
on NBH dataset, while the second-best result is only 94.37%
(achieved by OP). This suggests that CNHD has a stronger
discriminative power for network-based disease identifica-
tion than baseline and state-of-the-art methods. Second, our
CNHD method is superior to four topology-based methods
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Figure 3: Visual plots of hub structure identified by CNHD from brain connectivity networks on three datasets, (a) NBH, (b)
COBRE, and (c) Taiwan. Here, each node represents a brain region, and each edge represents the connections between a pair
of brain regions. Also, the thickness of an edge represents the strength of a specific connection.

(i.e., CC, Avg-DE, WLGK and t-BNE) regarding seven eval-
uation metrics. It implies that global structure information
conveyed in hubs (as explored in CNHD) helps promote the
learning performance, compared with local structure infor-
mation (e.g., clustering coefficient) captured by topology-
based methods. Third, subgraph-based methods (i.e., GB
and OP) generally obtain better performance than the base-
line and topology-based methods, but its overall perfor-
mance is worse than CNHD. This may be due to those sub-
graphs mined by GB and OP could cover the essential hub
structure that is discriminative for network identification,
while such hub structure is not employed in topology-based
methods. In particular, although the OP method utilizes both
connection strength and ordinal relationship among edges,
its feature extraction is still independent of the classifier
learning. This could partly explain why our CNHD method
outperforms OP in most cases.

Analysis of Detected Network Hubs We investigate the
identified hub nodes (i.e., non-zero columns in V) from
functional connectivity networks of all training subjects in
three datasets. Since a 5-fold CV strategy is used in the ex-
periments, the identified hub nodes may be different in dif-
ferent folds. Hence, we simply show the hub nodes that are
detected from one fold. On three datasets, we plot the ma-
trix V that contains hub structures learned by the proposed
CNHD method in Figure 2. As can be seen from Figure 2,
there are approximately 5 hubs detected from each of three
datasets. Also, Figure 2 shows that connections within each
hub node (i.e., a column) are densely-connected, while con-
nections between the remaining nodes are sparse.

We further visualize the hub structure identified by our
method in Figure 3, using the Brain Net Viewer toolbox5. In
Figure 3, each node represents a brain region (i.e., ROI), and
each edge denotes the connections between a pair of ROIs.
Also, nodes with turquoise color refer to the non-hub brain
regions, while those with other colors correspond to hub
nodes detected by our CNHD method. Figure 3 indicates
that four hub nodes are consistently detected from three
datasets, including DCG, THA, IPL, and TPOsup. These
hub nodes have been reported in previous studies (Heuvel,
Sporns, and Olaf 2013; Mikail and Ed 2013), suggesting

5https://www.nitrc.org/projects/bnv/

that our method can produce reliable results in hub detec-
tion from functional brain connectivity networks.

0 5 10 15 20
0

5

10

15

Iterations
O

b
je

ct
iv

e 
F

u
n

ct
io

n
 V

al
u

es
  (

 
 1

0
-3

 )

 

 

NBH

COBRE

Taiwan

Figure 4: Objective function value vs. iteration number
for optimization, achieved by our CNHD model on three
datasets: (a) NBH, (b) COBRE, and (c) Taiwan.

Convergence Evaluation We now study the efficacy of
the proposed optimization algorithm for solving the objec-
tive function in CNHD. Figure 4 shows the objective func-
tion values (i.e., L in Eq. (5)) with respect to the number
of iterations on different datasets. Figure 4 shows that the
objective function value decreases steadily with more iter-
ations. Importantly, the proposed algorithm can converge
within 20 iterations, indicating its fast convergence rate.

Conclusion
In this paper, we present a Connectivity Network analysis
method with discriminative Hub Detection named CNHD
for brain network analysis. We incorporate the feature ex-
traction of brain networks, network-based classifier training
into a unified framework so that the two tasks could benefit
each other. Also, CNHD can automatically identify discrim-
inative hub structures from functional connectivity network.
We evaluated our method on three real fMRI datasets, with
experimental results suggest the superiority of our method
in disease diagnosis and network hub identification.
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