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Abstract
Tissue segmentation of infant brain MRIs with risk of autism is critically important for characteriz-

ing early brain development and identifying biomarkers. However, it is challenging due to low

tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6

months of age, the voxel intensities in both gray matter and white matter are within similar ranges,

thus leading to the lowest image contrast in the first postnatal year. Previous studies typically

employed intensity images and tentatively estimated tissue probabilities to train a sequence of

classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is

largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited

and topological errors frequently exist, which will significantly degrade the performance of subse-

quent analyses. Although topological errors could be partially handled by retrospective topological

correction methods, their results may still be anatomically incorrect. To address these challenges,

in this article, we propose an anatomy-guided joint tissue segmentation and topological correction

framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to

the outer cortical surface as anatomical prior knowledge, and incorporate such prior information

into the proposed framework to guide segmentation in ambiguous regions. Experimental results on

the subjects acquired from National Database for Autism Research demonstrate the effectiveness

to topological errors and also some levels of robustness to motion. Comparisons with the state-of-

the-art methods further demonstrate the advantages of the proposed method in terms of both

segmentation accuracy and topological correctness.

K E Y W O R D S

anatomical guidance, autism, isointense phase, level set, segmentation

1 | INTRODUCTION

Autism spectrum disorder (ASD) is known as a complex develop-

mental disability, characterized by persistent deficits in social com-

munication and social interaction across multiple contexts, restricted

interests and repetitive patterns of behavior, or activities (Guze,

1995). According to a new government survey, it shows 1 in 45

children (ages 3–17) are diagnosed with ASD, by the Centers for

Disease Control and Prevention (CDC). ASD is mainly diagnosed by

the observation of core behavioral symptoms and is not typically

diagnosed until around 3–4 years of age in the United States

(Damiano, Mazefsky, White, & Dichter, 2014). Consequently,

intervention efforts may miss a critical developmental window. Thus,

it is critical to detect ASD earlier in life, in order to bring about ear-

lier intervention. As reported in Shen et al. (2013), Stoner et al.

(2014), and Wolff et al. (2012), neurobiological or endophenotypic

atypicalities may be evident in infants at high risk for ASD as young

as 6 months of age. These findings demonstrate the brain differen-

ces between autism and controls in the first postnatal year, before

the behavioral symptoms appearing (Sowell & Bookheimer, 2012),

implying that it is possible to identify brain biomarkers of ASD in

the very early stage for early diagnosis and intervention. For exam-

ple, in Shen et al. (2017), it was revealed that ASD causes an extra-

axial fluid and is characterized by excessive CSF over the frontal
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lobes at 6–9 months of age, which raises the possibility that those

brain anomalies may serve as potential biomarkers for early identifi-

cation of ASD.

To measure early brain development and identify biomarkers,

accurate segmentation of MRI into different regions of interest, for

example, white matter (WM), gray matter (GM), and cerebrospinal fluid

(CSF), is the most critical step (Gao et al., 2013; Isgum et al., 2015; Li

et al., 2016; Li et al., 2014b; Makropoulos et al., 2016; Makropoulos

et al., 2014; Mostapha, Casanova, Gimel’farb, & El-Baz, 2015; Qiu

et al., 2015; Rodrigues et al., 2015; Shi et al., 2012b; Wang et al.,

2014a). In fact, due to inherent ongoing myelination and maturation

(Hazlett et al., 2012; Weisenfeld & Warfield, 2009), there are three dis-

tinct phases in the first-postnatal-year brain MRI (Paus et al., 2001),

including (a) infantile phase (�5 months), (b) isointense phase (6–8

months), and (c) early adult-like phase (�9 months). Both infantile and

early adult-like phases show relatively good contrast on either T1- or

T2-weighted MRI. For example, in T1-weighted MRI, the intensities of

WM are lower than those of GM in the infantile phase; while the inten-

sities of WM are higher than those of GM in the early adult-like phase.

At some in-between ages (e.g., 6 months of age), the intensities of WM

are similar with those of GM and thus their intensity distributions are

highly overlapped (Wang et al., 2012). For instance, the 1st row of

Figure 1 shows the representative examples of T1- and T2-weighted

images scanned at around 6 months of age. It can be observed that the

intensities of voxels in WM and GM are within similar ranges (espe-

cially in the cortical regions), thus posing significant challenges for tis-

sue segmentation. Also, due to different myelination rates across infant

subjects, this kind of low tissue contrast is often observed from infant

scans between 3 and 9 months of age.

Many pioneer works (Anbeek et al., 2008; Cocosco, Zijdenbos, &

Evans, 2003; Gui et al., 2012; Isgum et al., 2015; Leroy et al., 2011;

Makropoulos et al., 2014; Merisaari et al., 2009; Moeskops et al., 2016;

Prastawa, Gilmore, Lin, & Gerig, 2005; Shi et al., 2009; Shi et al., 2011;

Shi et al., 2010; Song, Awate, Licht, & Gee, 2007; Wang et al., 2014b;

Wang, Shi, Lin, Gilmore, & Shen, 2011; Warfield, Kaus, Jolesz, & Kikinis,

2000; Weisenfeld & Warfield, 2009; Xue et al., 2007; Xue, Shen, &

Davatzikos, 2006) have been proposed for brain segmentation and

have achieved encouraging results. Recently, a minimal processing

pipeline was proposed for neonatal cortical surface reconstruction

(Makropoulos et al., 2018). This pipeline consists of tissue segmenta-

tion, cortical surface extraction, and cortical surface inflation. However,

most of previous work focused on segmentation of neonatal

FIGURE 1 Comparison of LINKS and the proposed method. (a) and (b) show T1- and T2-weighted isointense infant brain images with
extremely low tissue contrast. (c) and (f) are the WM probability maps estimated by LINKS (Wang et al., 2015) and the proposed work with
anatomical guidance, respectively, with their corresponding inner surfaces shown in (d) and (g). In (d), the region indicated by the red ellipse
is topologically correct, but anatomically incorrect due to missing of a gyral region. Corresponding thickness maps shown on the outer surface
by LINKS and the proposed work are provided in (e) and (h), respectively [Color figure can be viewed at wileyonlinelibrary.com]
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(<3 months of age) brain images with relatively high tissue contrast in

T2-weighted image. Related reviews on neonatal brain MRI segmenta-

tion methods can be found in Devi, Chandrasekharan, Sundararaman,

and Alex (2015) and Makropoulos, Counsell, and Rueckert (2017). To

the best of our knowledge, only few studies focus on the segmentation

of 6-month infant brain images with risk of autism. In 2012, a pioneer-

ing work (Hazlett et al., 2012) reported the findings on brain volume in

6–7-month-old infants at high familial risk for autism; however, these

findings were obtained only on the total brain volume (GM plus WM)

measures, without separating GM and WM, due to the challenges in 6-

month brain segmentation. Similarly, a recent work in 2017 (Shen et al.,

2017) found increased axial-CSF in the subarachnoid space for high-

risk infants who later develop autism. In another recent Nature article

in 2017 (Hazlett et al., 2017), they employed an indirect way for seg-

mentation of 6-month images by warping the segmentation from their

follow-up 12-months/24-months images. The warping was based on

ANTs (Avants et al., 2011) with normalized cross correlation of joint

T1- and T2-weighted intensity images. Due to the extremely low con-

trast of 6-month images, the longitudinal image correspondences were

difficult to identify, which may result in under-segmented WM and

thus thicker cortical thickness. A similar strategy of using follow-up

scans for guiding the segmentation of 6-month subjects was also

employed in Vardhan, Fishbaugh, Vachet, and Gerig (2017). One of the

major limitations of these methods (Hazlett et al., 2017; Vardhan et al.,

2017) is that they fully depend on the availability of follow-up 12-

month/24-month images. Given a new acquired 6-month MRI scan,

the segmentation has to be delayed until 12-month/24-month follow-

up scans are acquired, which is not practical. To identify brain bio-

markers of autism in the very early stage for early intervention, a stand-

alone method is highly needed.

Recently, a learning-based multi-sources integration framework

(namely LINKS) (Wang et al., 2015) was proposed to adaptively inte-

grate information from both intensity images and tentatively estimated

tissue probability maps for 6-month infant brain image segmentation.

Despite of relatively reasonable results, one major limitation of this

method is that the prior anatomical knowledge of the brain is largely

ignored during the segmentation. Consequently, the LINKS method

cannot guarantee the topological correctness of segmentation results.

Indeed, topological errors caused by inaccurate segmentation are fre-

quently seen during cortical surface reconstruction, especially in infant

brains (Hao, Li, Wang, Meng, & Shen, 2016). To address these issues,

many sophisticated correction methods (Bazin & Pham, 2005; Fischl,

Liu, & Dale, 2001; Han et al., 2004; Shattuck & Leahy, 2001; Shi, Lai,

Toga, & Initi, 2013) could be used after tissue segmentation. In general,

topological correction typically involves two sequential tasks, that is, (a)

locating topologically defected regions and (b) correcting them. For

example, Hao et al. (2016) proposed an infant-dedicated topological

correction method, which can correct the topologically defected

regions by referring to a set of registered topologically correct refer-

ence images. Nonetheless, this method is computationally expensive,

since it requires conducting multiple nonlinear registrations between

the reference images and the to-be-corrected image. Moreover, with-

out the prior anatomical knowledge, topological correction cannot

necessarily generate desired results (Segonne, Pacheco, & Fischl, 2007).

Particularly, due to low contrast between WM and GM in 6-month

infant brain images, WM voxels may be under-segmented (as shown in

Figure 1c), resulting in a “U”-shape in the inner surface. A typical exam-

ple can be seen in Figure 1d. The under-segmented WM usually results

in an increased cortical thickness, as shown in Figure 1e. It is worth

noting that WM surface indicated in the red ellipse is topologically cor-

rect but anatomically incorrect (Yotter, Dahnke, Thompson, & Gaser,

2011). In such a case, correction operation will not be involved since it

is already topologically correct.

Therefore, it is highly necessary to incorporate prior anatomical

knowledge into tissue segmentation. In this work, we will consider the

following two types of anatomical knowledge:

(A1) The human cerebral cortex is a folded sheet of GM wrapping WM;

(A2) Cortical thickness is within a certain range.

Based on the anatomical knowledge, inspired by previous works

(Wang et al., 2015; Zeng, Staib, Schultz, & Duncan, 1998; Zikic,

Glocker, & Criminisi, 2014), we propose a new anatomy-guided joint

tissue segmentation and topological correction framework for infant

brain MRI, by using the above-mentioned two types of anatomical

knowledge. According to the discussions in the previous paragraph and

as a concluding remark by the results in Figure 1, we hypothesize that

inaccurate segmentation or topological errors will result in abnormal

cortical thickness. For example, cortical thickness in the missing gyral

region shown in Figure 1e is unexpectedly large. For simplicity, we

denote the inner surface as the WM/GM boundary, and the outer sur-

face as the GM/CSF boundary. Based on (A1) and (A2), given an outer

(or inner) surface, the location of the inner (or outer) surface can be

roughly estimated, which can help recover the missing gyri with unex-

pectedly large cortical thickness. Since tissue contrast between GM

and CSF is much higher than that between GM and WM, it is more fea-

sible to use the outer surface (i.e., GM/CSF boundary) to guide the

inner surface estimation. Accordingly, we first train a sequence of clas-

sifiers to extract CSF from isointense infant brain images to construct

the anatomical guidance. In our implementation, we employ a signed

distance map with respect to GM/CSF boundary as the anatomical guid-

ance. With the anatomical guidance, we then train another sequence

of classifiers for joint tissue segmentation and topological correction.

2 | METHODS

We will first introduce the dataset used in this study. Then we intro-

duce the proposed method to generate the anatomical guidance by

classifying the brain images into two classes CSF and WM 1 GM.

Based on the generated anatomical guidance, we further classify each

WM 1 GM map into separate WM and GM maps.

2.1 | Dataset and image preprocessing

The T1- and T2-weighted MR images of 50 de-identified infants were

from National Database for Autism Research (NDAR). They were

acquired at around 6 months of age on a Siemens 3T scanner. All scans

WANG ET AL. | 3



were acquired while the infants were naturally sleeping and fitted with

ear protection, with their heads secured in a vacuum-fixation device.

T1-weighted MR images were acquired with 160 sagittal slices using

parameters: TR 5 2,400 ms, TE 5 3.16 ms and resolution 5 1 3

131 mm3. T2-weighted MR images were obtained with 160 sagittal sli-

ces using parameters: TR 53,200 ms, T2 5 499 ms and resolution 5 1

3 1 3 1 mm3. Note that the imaging protocol has been optimized to

maximize tissue contrast (Hazlett et al., 2012). In case the acquired

images were severely affected by motion, the acquisition was repeated

until satisfactory images were obtained. For image preprocessing, T2-

weighted images were linearly aligned onto their corresponding T1-

weighted images. Afterward, skull stripping and intensity inhomogene-

ity correction were performed using in-house tools (Shi et al., 2012a;

Tustison et al., 2010).

Accurate manual segmentation, providing labels for training, is of

great importance for learning-based segmentation methods. Due to

low contrast and huge number of voxels in brain images, manual seg-

mentation is time-consuming (Rodrigues et al., 2015). Hence, to gener-

ate reliable manual segmentations, we first take advantage of

longitudinal follow-up 24-month scans with high tissue contrast to gen-

erate an initial automatic segmentation for isointense subjects by using

a publicly available software iBEAT (http://www.nitrc.org/projects/

ibeat/). This is based on the fact that, at term birth, the major sulci and

gyri in the brain are already present, and are generally preserved but

only fine-tuned during early postnatal brain development (Chi, Dooling,

& Gilles, 1977). Therefore, we can utilize the longitudinal late-time-

point images (e.g., 24-month), which can be segmented with a high

accuracy by using existing segmentation tools, for example, FreeSurfer

(Fischl, 2012), to guide the segmentation of early-time-point (e.g., 6-

month) infant images. Figure 2 shows the automatic segmentation

results by iBEAT on four representative subjects. Second, based on the

segmentation results by iBEAT, manual editing was further performed

by an experienced neuroradiologist. Details of manual protocol are

available in the supplement. The corresponding manual segmentation

results are shown in the 4th column of Figure 2, with their difference

maps compared to iBEAT-based results shown in the last column. For

each subject, it took almost a whole week (40 hr) for manual segmenta-

tion, with around 214,801 6 14,835 voxels (26%61.8% of total brain

volume) re-labeled. In such a way, the issue of the potential bias from

the automatic segmentations can be largely minimized and also the

quality of manual segmentation can be ensured. Considering that there

are almost 10,000 subjects archived in NDAR, we believe it is worth to

make such a great manual annotation effort, which will make our learn-

ing algorithm more accurate and robust on this large dataset. Note that

FIGURE 2 Comparison of segmentations. The 1st and 2nd columns show the original T1- and T2-weighted 6-month infant brain images,
with the automatic segmentation results by iBEAT and the further manual corrections shown in the 3rd and 4th columns. The differences
between iBEAT and manual correction results are also provided in the last column
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these follow-up scans are used only to generate manual segmentations

for training. After training, segmentation will be performed using only

6-month-old infant images, without reliance on any follow-up scans.

2.2 | Anatomical guidance

To derive anatomical guidance from the outer surface (i.e., GM/CSF

boundary), we need to first classify brain images into two classes, that

is, CSF and WM 1 GM. Many classic methods can be employed for this

binary classification problem. Similar to the previous work (Wang et al.,

2015), we employ both intensity images and tentatively estimated tis-

sue probability maps to train a sequence of classifiers for CSF versus

WM 1 GM classification. The flowchart is shown in Figure 3, which

contains three main components in the training stage. Specifically, (a)

we use the appearance features extracted from intensity images, and

employ random forests (Breiman, 2001) to train the first-layer classi-

fiers. (b) Based on the trained first-layer classifiers, we can derive initial

CSF and WM 1 GM probability maps. Inspired by the auto-context

model (Loog & Ginneken, 2006; Tu & Bai, 2010), we then extract con-

text features from the tentatively estimated tissue probability maps,

together with appearance features from intensity images, to train the

second-layer classifiers, for refining the segmentation results. (c) By

iteratively training classifiers using both intensity images and the

updated tissue probability maps, we can train a sequence of classifiers

for segmentation. In the testing stage, the learned classifiers at each

layer can be applied sequentially to iteratively refine the estimated

probability maps for a new testing image.

Figure 4 shows the finally estimated CSF and WM 1 GM probabil-

ity maps for a testing image (the same image in Figure 1). It can be

observed that CSF has been reasonably identified, especially for CSF in

sulcal regions, which will largely prevent possible topological errors

such as handles, in the beginning stage.

Based on classification results, it is straightforward to construct a

signed distance map (i.e., a level set function) with respect to the

boundary of GM/CSF, as shown in Figure 4c. Basically, the function

value at each voxel is the shortest distance to its nearest point in the

boundary of GM/CSF, and it takes positive values for voxels inside of

WM 1 GM, while negative values outside of WM 1 GM. Therefore,

the zero level set corresponds to the outer surface, as shown in Figure

4d. It is worth noting that the definition of the signed distance map

matches the brain anatomical knowledge: (a) the sign will roughly con-

strain WM to be inside of WM 1 GM (A1); and (b) the absolute dis-

tance value will further relatively and precisely constrain WM to keep

the cortical thickness within a reasonable range (A2).

2.3 | Anatomy-guided tissue segmentation and
topological correction

Similar to the method in Section 2.2, we further classify each

WM 1 GM map into separate WM and GM maps by training another

sequence of classifiers. It is worth noting that, besides using intensity

images and tentatively estimated tissue probabilities maps, the signed

distance maps (used as anatomical guidance) will also be incorporated

into the learning process. The flowchart for classifying WM and GM is

shown in Figure 5. Specifically, in the training stage, (a) we train the

first-layer of classifiers by extracting appearance features from inten-

sity images along with the anatomical features from the signed distance

map. (b) Based on the trained first-layer classifiers, we can derive initial

FIGURE 3 Flowchart of training a sequence of classifiers for CSF versus WM 1 GM classification [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Demonstration of tentative results. (a) and (b) show the estimated CSF and WM 1 GM probability maps for the testing image in
Figure 1. Also, (c) illustrates the signed distance map with respect to the outer surface (d) [Color figure can be viewed at wileyonlinelibrary.com]
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WM and GM probability maps. Then, we will extract context features

from the estimated tissue probability maps, together with appearance

features from intensity images and also anatomical features from the

signed distance map, to train the second-layer classifiers. (c) By itera-

tively training classifiers with random forests on the intensity images,

the signed distance map and the updated tissue probability maps, we

can train a sequence of classifiers for classification. Note that, in our

learning-based framework, the spatially varying cortical thickness

(Fischl, 2012; Li et al., 2014a) is implicitly and adaptively learned from

the training images, instead of being explicitly defined in a constant

range as in Zeng et al. (1998).

In the testing stage, the learned classifiers are sequentially applied

on each testing image to iteratively refine the estimated probability

maps, steered by the anatomical guidance constructed in Section 2.2.

Figure 6 shows an example with the tentatively estimated WM proba-

bility maps and the corresponding inner cortical surfaces (from left to

right) estimated by the trained classifiers for the testing image illus-

trated in Figure 1. Recall the missing gyral region in the inner cortical

FIGURE 6 The first two rows (from left to right) show the tentatively estimated WM probability maps and their zoomed views estimated
by a sequence of classifiers, with the inner surface and also the cortical thickness maps on the outer surfaces shown in the last two rows,
for the testing image in Figure 1. Steered by the anatomical guidance from the outer surface as shown in the last column (copied from
Figure 4d), the missing gyrus can be gradually recovered [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Flowchart of training a sequence of classifiers for WM versus GM classification [Color figure can be viewed at
wileyonlinelibrary.com]
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surface of Figure 1, which leads to unexpectedly large cortical thick-

ness. With the anatomical guidance from the outer surface in the last

column of Figure 6 (copied from Figure 4d), as indicated by the green

ellipse, more WM voxels are expected to keep cortical thickness within

a reasonable range. It can be observed that the WM probability in the

green ellipse is gradually enhanced, and thus the missing gyrus is gradu-

ally recovered by the anatomical guidance, along which the cortical

thickness (in the last row) is becoming reasonable. Similarly, the topo-

logical errors, for example, holes or handles, causing abnormal cortical

thickness, can also be corrected, with the results shown in the follow-

ing section (see Figure 7).

2.4 | Implementation: Feature extraction, classifier
training and testing

For training the classifiers, we can extract various features from inten-

sity images, tissue probability maps and signed distance maps, such as

SIFT (Lowe, 1999), HOG (Dalal & Triggs, 2005), and LBP features (Aho-

nen, Hadid, & Pietikainen, 2006). In this work, although other kinds of

features could also be used, we use 3D Haar-like features (Viola &

Jones, 2004) mainly due to their computational efficiency. Specifically,

for each voxel x, its Haar-like features are computed as the local mean

intensity of any randomly displaced cubical region R1 or the mean

intensity difference between any two randomly displaced, asymmetric

cubical regions (R1 and R2), within the image patch R (Han, 2013):

f x; Ið Þ5
1

jR1j

X

u2R1

I uð Þ2d
1

jR2j

X

v2R2

I vð Þ; R1 2 R; R2 2 R; d 2 0; 1f g (1)

where R is the patch centered at voxel x, I is any kind of image types

(intensity images, tissue probability maps, or signed distance maps), and

the parameter d 2 0; 1f g indicates whether one or two cubical regions

are used. In the intensity image, its intensities are normalized to have

the unit l2 norm (Cheng, Liu, & Yang, 2009; Wright et al., 2010). How-

ever, as the probability maps are already in the range [0 1], there is no

need to conduct any further normalization on them; similarly, for the
patches from signed distance maps, we do not perform any normaliza-
tion to preserve the physical meanings they bear. In theory, for each
voxel, we are able to determine an infinite number of such features.
For simplicity, we extract 3D Haar-like features from intensity images,
tissue probability maps and signed distance maps as appearance, con-
text and anatomical features, respectively.

Based on the extracted features f x; Ið Þ, we will use random forest

as classifier to determine a class label c 2 C for a given testing

voxel x 2 X. The random forest is an ensemble of decision trees,

indexed by t 2 1; T‰ �, where T is the total number of trees at each layer.

To inject the randomness for improved generalization (Criminisi, Shot-

ton, & Konukoglu, 2011), only a subset of features and training voxels

are selected for training each decision tree. During training, each deci-

sion tree t will learn a weak class predictor pt cjf x; Ið Þð Þ. Specifically, a

decision tree consists of two types of nodes, namely internal nodes

(nonleaf nodes) and leaf nodes. Each internal node stores a split (or

FIGURE 7 Importance of using the anatomical guidance to correct topological errors. The 1st column shows the WM probabilities and
their corresponding inner surfaces estimated without using anatomical guidance. The 2nd to 4th columns show the tentatively estimated
results of the proposed method. Steered by the anatomical guidance from the last column, the errors are gradually corrected [Color figure
can be viewed at wileyonlinelibrary.com]
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decision) function to divide the training data to its left or right child

node based on one feature and its threshold, which are learned to max-

imize the information gain of spitted training data. On the other hand,

each leaf stores the final answer (predictor) (Criminisi et al., 2011). We

commence by constructing its root (internal) node, where its split func-

tion is optimized to split the training samples into two subsets, which

are then placed in the left and right children (internal) nodes. The tree

continues growing as more splits are made, and stops at a specified

depth Dð Þ, or when satisfying the condition that a leaf node contains

less than a certain number of training samples (smin). Finally, by simply

counting the labels of all training samples, which reach each leaf node,

we can associate each leaf node l with the empirical distribution over

classes pl
t cjf x; Ið Þð Þ.

During testing, each voxel x to be classified is independently

pushed through each trained tree t, by applying the learned split func-

tions. Upon arriving at a leaf node lx, the empirical distribution of the

leaf node is used to determine the class probability of the testing sam-

ple x at tree t, that is, pt cjf x; Ið Þð Þ5plx
t cjf x; Ið Þð Þ. The final probability of

the testing sample x is computed as the average of the class probabil-

ities from individual trees, that is, p cjxð Þ5 1
T

PT
t51 pt cjf x; Ið Þð Þ.

In our implementation, for each tissue type, we randomly select

5,000 training voxels from each training subject. Then, for each training

voxel with the patch size of 7 3 7 3 7, 10,000 random Haar-like fea-

tures are equally extracted from T1- and T2-weighted MR images, ten-

tatively estimated tissue probability maps of WM, GM, and CSF, and

signed distance maps. In each layer of classifier training, we train T

520 decision trees. We conservatively stop the growth of tree at a

depth of D 5100, with a minimum of smin 5 8 samples for each leaf

node. These parameters for classifier training were empirically set

according to Wang et al. (2015) (Please refer to Section 2.2 for the dis-

cussion on parameter selection).

3 | EXPERIMENTAL RESULTS

We have validated the proposed method on 50 6-month infant sub-

jects using 5-fold cross-validation with five repeats. We first demon-

strate the effectiveness to correct topological errors and the

robustness to motion, and then perform comparisons with state-of-

the-art methods. For evaluation, visual inspection is employed for quali-

tative comparison, and the manual segmentation is considered as the

“ground truth” for quantitative comparison (see Section 2.1).

3.1 | Quantitative evaluation metrics

We mainly employ Dice ratio (DR) to evaluate the segmentation accu-

racy, which is defined as:

DR52jA \ Bj= jAj1jBjð Þ (2)

where A and B are the two segmentation results of the same image.

We also evaluate the accuracy by measuring the modified Hausdorff

distance (MHD), which is defined as the 95th-percentile Hausdorff

distance:

MHD A; Bð Þ5max 95Kth
a2surf Að Þd a; surf Bð Þð Þ; 95Kth

b2surf Bð Þd b; surf Að Þð Þ
� �

(3)

where surf Að Þ is the surface of segmentation A, 95Kth
a2surf Að Þ represents

the Kth ranked distance such that K=jsurf Að Þj595%, and d a; surf Bð Þð Þ

is the nearest Euclidean distance from a surface point a to the

surface B.

3.2 | Topological correction

In Figure 6, we have shown the advantage of using the anatomical

knowledge in guiding tissue segmentation. In Figure 7, we further dem-

onstrate the effectiveness of the anatomical guidance for topological

correction. The 1st column in Figure 7 shows the results without ana-

tomical guidance, causing holes and handles. These holes and handles

result in abnormal cortical thickness. The 2nd to 4th columns show the

tentatively estimated WM probability maps and the corresponding

inner surfaces, steered by the anatomical guidance shown in the last

column. It can be observed that these topological errors are gradually

corrected by using the anatomical guidance.

3.3 | Robustness to motion

During the image acquisition process, motion from infants is inevitable.

We have to repeat the acquisition in case the acquired images were

seriously affected by infant motion. However, there may still exist

some small motion. Therefore, a motion-robust segmentation method

is highly desired. Figure 8 shows an example of T1- and T2-weighted

images with motion effects. Existing work without considering anatom-

ical knowledge, such as LINKS (Wang et al., 2015) and topological cor-

rection (TC) method (Hao et al., 2016), cannot achieve reasonable

results, as shown in (a) and (b), respectively. By contrast, the proposed

work is robust to the motion and thus produces the relatively reasona-

ble result (c), steered by anatomical guidance.

3.4 | Comparison with the state-of-the-art methods

In the following, we quantitatively compare our method mainly with

LINKS (Wang et al., 2015) on 50 6-month infant subjects, since LINKS

achieves the state-of-the-art segmentation results. We will also com-

pare with the infant-dedicated topological correction (TC) method (Hao

et al., 2016). Figure 9 demonstrates the segmentation results of differ-

ent methods for a typical subject. The 1st row shows the original T1-

and T2-weighted images and their corresponding anatomical guidance

from zero level set function (i.e., the outer cortical surface). The 2nd

and 4th rows show the segmentation results and the inner cortical

surfaces obtained by the different methods, with their corresponding

zoomed views also shown in the 3rd and 5th rows, respectively. We

first visually compare the proposed method with LINKS, which also

effectively trains a sequence of classifiers on intensity images and ten-

tatively estimated tissue probability maps. However, without anatomi-

cal guidance, some WM are missing in the results of LINKS, due to the

extremely low tissue contrast between WM and GM, and also there

are many topological errors in the reconstructed inner cortical surface.
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To correct those topological errors, we further employ a learning-based

topological correction (Hao et al., 2016) to refine the results as shown

in the 2nd column of Figure 9. However, due to large segmentation

and topological errors, the registered reference images could not be

aligned well with the to-be-corrected image. Consequently, the holes

are incorrectly broken, which are actually topologically correct but ana-

tomically incorrect, especially for the missing gyrus. In contrast, our

proposed anatomy-guided framework achieves better results, with

appropriately recovered gyrus and also anatomically corrected holes/

handles.

Furthermore, we quantitatively compare our method with LINKS

and TC via both DR and the MHD, with the results given in Table 1. To

investigate whether the segmentation results achieved by our method

are significantly different from those obtained by each competing

method, we further perform a paired t-test on both DR and MHD. It

can be seen from Table 1 that our proposed method achieves more

accurate results in terms of both DR and MHD. It is worth noting that

DR of CSF is higher than that of WM or GM in all three methods,

which is mainly due to the relatively high contrast between CSF and

other tissues. That is also the reason that we use the outer surface (i.e.,

GM/CSF boundary) to guide the inner surface estimation.

To further demonstrate the improvement by the proposed

method, in Figure 10, we present a representative comparison between

different methods with the error maps. As shown in the center of Fig-

ure 10, the blue indicates over-segmentation (e.g., handles) and the

green indicates under-segmentation (e.g., missing U-gyral patterns and

holes). Note that we have excluded these isolated error regions, each

with the total volume smaller than five voxels. In the surrounding of

Figure 10, the zoomed views of one handle, one hole and two missing

U-gyral patterns are also presented for a better visualization. The quan-

titative measurement of segmentation errors with respect to volume is

listed in Table 2. From the table, we find the under-segmentation (e.g.,

missing U-gyral patterns) denominate the errors by the LINKS and TC.

These segmentation errors, for example, holes, handles and missing U-

gyral patterns, causing abnormal cortical thickness, have been largely

corrected by the proposed work with the anatomy guidance.

3.5 | Estimation of cortical thickness

As introduced in Section 1, accurate segmentation is critically impor-

tant to characterize brain measurements, for example, cortical thick-

ness. We further applied the proposed work on 127 infant subjects at

FIGURE 8 Comparisons with learning-based segmentation method (LINKS) (Wang et al., 2015) and topological correction (TC) method
(Hao et al., 2016) on a subject with motion. The 1st row shows T1- and T2-weighted images with motion effects. Without anatomical guid-
ance, LINKS (a) and TC (b) are sensitive to motion effect. By contrast, our proposed anatomy-guided framework achieves reasonable
results (c) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Comparisons with the learning-based segmentation method (LINKS) (Wang et al., 2015) and the topological correction (TC) method
(Hao et al., 2016). The 1st row shows T1-, T2-weighted images, and anatomical guidance from zero level set function (i.e., the outer cortical
surface). Without anatomical guidance, the results by LINKS have topological errors in the reconstructed inner cortical surface (a). Topological
correction results by Hao et al. (2016) are still anatomically incorrect (b). By contrast, our proposed anatomy-guided framework achieves better
results (c), with appropriately recovered gyri and also corrected holes/handles [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Averaged Dice ratio (in percentage) and MHD (in mm) for three different methods on 50 isointense infant images

Method LINKS (Wang et al., 2015) TC (Hao et al., 2016) Proposed

Dice Ratio WM 87.1 6 0.56 (p50.0001) 87.5 6 0.45 (p50.0001) 89.4 6 0.31

GM 86.5 6 0.78 (p50.0003) 87.2 6 0.63 (p50.0003) 90.5 6 0.55

CSF 92.6 6 0.29* (p50.90) 92.6 6 0.29* (p50.90) 92.5 6 0.31

MHD (in mm) WM/GM 1.50 6 0.37 (p50.0001) 1.29 6 0.25 (p50.0001) 0.89 6 0.11

The bold indicates that the respective result is significantly better than others (p value < .005). The symbol * in the table indicates that the topological
correction (TC) only corrects the inner cortical surface, and thus its accuracy on CSF segmentation is the same as the original LINKS (Wang et al.,
2015).
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around 6-month of age from NDAR and calculated the cortical thick-

ness. The mean cortical thickness over 127 infant subjects is 2.689 6

0.092 mm, which is in line with the previous studies (Fischl & Dale,

2000; Geng et al., 2017; Li, Lin, Gilmore, & Shen, 2015; Lyall et al.,

2015). For example, reported cortical thickness from post-mortem

adult brains is in the range of 1.3–4.5 mm (Henery & Mayhew, 1989),

with the mean thickness of 2.5 6 0.7 mm (Fischl & Dale, 2000). In Li

et al. (2014a), the mean cortical thickness for 13 infant subjects is

2.611 6 0.080 mm at 6 months of age. However, it might be interest-

ing to note that the mean cortical thickness reported in a recent study

(Hazlett et al., 2017) for 42 6-month infant subjects is 5.971 6

0.255 mm, which is much higher than previous studies. Methodological

differences could potentially account for these conflicting findings. In

(Hazlett et al., 2017), the cortical surfaces at 6-month subjects were

determined by warping the cortical surfaces from their follow-up 12-

month/24-month subjects based on ANTs (Avants et al., 2011) with

normalized cross correlation of joint T1- and T2-weighted images. Due

to the extremely low contrast of 6-month images, the cortical corre-

spondences were difficult to identify, which may result in under-

segmented WM and thus thicker cortical thickness.

4 | DISCUSSIONS AND CONCLUSION

In this article, we proposed a novel anatomy-guided framework for

joint tissue segmentation and topological correction for 6-month infant

MRI, which is characterized with extremely low contrast between GM

and WM caused by the inherent ongoing WM myelination and matura-

tion. We took advantage of relatively high contrast between GM and

CSF to construct the anatomical guidance to guide the segmentation.

The experimental results have demonstrated that the anatomical guid-

ance is of great importance for tissue segmentation of infant brain

MRI. Although the proposed method still cannot guarantee the topo-

logical correctness, the topological errors are largely reduced as demon-

strated by experimental results.

There are many quantitative parameters, such as cortical thickness,

surface area, gyrification and curvature, to measure early brain devel-

opment. In this work, we have estimated cortical thickness based on

accurate segmentation results. It is defined as the minimal distance

between the inner surface and outer surface. Therefore, given a voxel

with a resolution of 1 3 1 3 1 mm3, one voxel error will result in

FIGURE 10 Comparison between different methods. Center: the 1st row shows the gold standard result and the 2nd row shows the results
by LINKS, TC and the proposed method. The 3rd row show differences between the 1st and 2nd rows, with the blue indicating over-
segmentation (e.g., handles), the green indicating under-segmentation (e.g., missing U-gyral patterns and holes), while the beige indicating con-
sistence with the gold standard result. The 4th row shows only error regions. Surrounding: the zoomed views of one handle, one hole and two
missing U-gyral patterns, indicated by arrows, are also presented for better visualization [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Segmentation errors (in voxel) for different methods on
50 isointense infant images

Type of
segmentation
errors

LINKS (Wang
et al., 2015)

TC (Hao
et al., 2016) Proposed

Over-segmentation
(e.g., handles)

9,429 6 2,944 6,824 6 2,726 569 6 255

Under-segmentation
(e.g., missing U-gyral
& holes)

14,269 6 5,990 12,545 6 5,914 2,202 6 696
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61 mm thickness estimation error. Therefore, thickness is much more

sensitive with respect to the segmentation accuracy, compared with

surface area, gyrification and volume, especially considering the fact

that the mean thickness is �2.5 mm (Fischl & Dale, 2000; Geng et al.,

2017; Li et al., 2015; Lyall et al., 2015). As an example, in Section 3.5,

due to possible under-segmented WM, the mean cortical thickness

reported in Hazlett et al. (2017) for 42 6-month infant subjects is

5.971 6 0.255 mm, which is much higher than those reported in the

previous studies (Fischl & Dale, 2000; Geng et al., 2017; Li et al., 2015;

Lyall et al., 2015).

There are many discriminative classification algorithms such as

support vector machines (SVM) (Burges, 1998), which have been

applied successfully to many tasks. However, compared with SVM, ran-

dom forests have two major advantages. (a) Random forests are inher-

ently multi-label classifiers, which allows us to classify different tissues

simultaneously. By contrast, SVMs are inherently binary classifiers. In

order to classify different tissues, they are often applied hierarchically

or in an one-versus-all manner. As also confirmed in works (Bosch, Zis-

serman, & Muoz, 2007; Pei, Criminisi, Winn, & Essa, 2007), random for-

ests have also shown to be better suited to multi-class problems than

SVMs. (b) Random forests are invariant with scales/ranges of different

types of features, while, for SVM, the contribution weights of different

types of features have to be carefully tuned (Hastie, Tibshirani, & Fried-

man, 2001). For example, in our case, the scale of probability maps is in

[0 1], while the scale of signed distance maps is in [240 20]. If we use

SVM, we have to carefully consider the contribution of each type of

features. In our work, the parameters for training the random forests

were empirically set according to Wang et al. (2015). Generally, for the

number of trees, we found that the more the better, but also the longer

it will take to do the training. Hence, we made a trade-off between the

performance and running time, and set it to 20. Regarding the allowed

depth of trees, in general, a low depth will be likely to under-fitting,

while a high value will be likely to over-fitting. The optimal patch size is

related to the complexity of the anatomical structure (Coup�e et al.,

2011; Tong, Wolz, Coup�e, Hajnal, & Rueckert, 2013). Too small or too

large patch size will result in poor performance. In this article, we

selected the patch size as 7 3 7 3 7 for the 6-month infant subjects

with the voxel size of 1 3 1 3 1 mm3, according to (Wang et al.,

2015).

While the proposed framework produces decent segmentation

results compared with previous works, some limitations should be

noted. First, we only consider (A1) and (A2) as anatomical knowledge to

guide the segmentation. In fact, other anatomical knowledge, for exam-

ple, gyral convexity and sulcal concavity, can also be potentially

employed for further improving the segmentation performance of our

proposed method. Second, we extract the same feature type, that is,

3D Haar-like feature, from both T1- and T2-weighted images, tissue

probability maps, and signed distance maps, which may not be the opti-

mal choice. It would be interesting to extract different discriminative

features from different types of images, which is one of our future

works. Alternatively, instead of designing these hand-crafted features,

we will also consider using deep learning (LeCun, Bengio, & Hinton,

2015) to automatically learn effective feature hierarchies from the

infant data. Our future work will also include applying the proposed

work on almost 10,000 subjects from NDAR to characterize early brain

development and identify possible biomarkers.

Manual labels are critically important for learning-based methods.

Considering the huge amount of manual labeling work, we will share

these manual labels with the community, as we did in a MICCAI Grand

Challenge (http://iseg2017.web.unc.edu). In this challenge, we have

shared manual labels on 10 infant subjects chosen from the pilot study

of Baby Connectome Project (BCP), which is recently started and will

acquire and publicly release MRI data from 500 typically developing

children, ages 0–5 years, over the course of four years. Since we are

the organizers of this challenge, we were requested by MICCAI not to

participate in this challenge.
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