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Sparse representation-based brain functional network modeling often results in large inter-subject vari-
ability in the network structure. This could reduce the statistical power in group comparison, or even
deteriorate the generalization capability of the individualized diagnosis of brain diseases. Although group
sparse representation (GSR) can alleviate such a limitation by increasing network similarity across sub-
jects, it could, in turn, fail in providing satisfactory separability between the subjects from different
groups (e.g., patients vs. controls). In this study, we propose to integrate individual functional connectivity
(FC) information into the GSR-based network construction framework to achieve higher between-group
separability while maintaining the merit of within-group consistency. Our method was based on an ob-
servation that the subjects from the same group have generally more similar FC patterns than those from
different groups. To this end, we propose our new method, namely “strength and similarity guided GSR
(SSGSR)”, which exploits both BOLD signal temporal correlation-based “low-order” FC (LOFC) and inter-
subject LOFC-profile similarity-based “high-order” FC (HOFC) as two priors to jointly guide the GSR-based
network modeling. Extensive experimental comparisons are carried out, with the rs-fMRI data from mild
cognitive impairment (MCI) subjects and healthy controls, between the proposed algorithm and other
state-of-the-art brain network modeling approaches. Individualized MCI identification results show that
our method could achieve a balance between the individually consistent brain functional network con-
struction and the adequately maintained inter-group brain functional network distinctions, thus leading
to a more accurate classification result. Our method also provides a promising and generalized solution
for the future connectome-based individualized diagnosis of brain disease.

© 2018 Published by Elsevier Ltd.

1. Introduction

due to the progress in modern neuroimaging and computing tech-
niques [3-12]. However, accurate MCI diagnosis is still considerably

Alzheimer’s disease (AD) is an irreversible serious neurological
disease in the elderly population, mainly characterized by progres-
sive perceptive and cognitive deficits [1]. As a prodromal stage of
AD, mild cognitive impairment (MCI) has attracted increasing at-
tention since more than half of MCI subjects will progress to de-
mentia in about five years [2]. Timely detection of MCI before con-
verting to AD is fundamentally important and clinically valuable
for effective intervention and possible treatment. Computer-aided
individual diagnosis of brain diseases has been increasingly studied
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challenging because of subtle functional and anatomical changes
in MCI subjects compared with normal aging people. A promis-
ing technique for sensitively capturing such subtle changes is con-
structing the whole-brain functional connectivity (FC) networks (or
brain connectome) based on the resting-state functional magnetic
resonance imaging (rs-fMRI) and extracting the connectome-based
features for classification. To this end, the FC is typically calculated
for each pair of brain regions by measuring the temporal synchro-
nization of their blood oxygenation level-dependent (BOLD) signals
[13,14], resulting in a whole-brain FC network characterizing the
intrinsic functional organization of the brain [15-18]. With many
successful applications for other brain diseases [19-21], the whole-
brain FC network has been extensively demonstrated to be more
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sensitive than the anatomical metrics for early AD diagnosis [22—
28].

While promising, most of the previous functional network stud-
ies have utilized simple FC metrics, e.g., Pearson’s correlation
(PC)-based temporal synchronization between two brain regions
[29,30]. Despite of its simplicity and biological intuitiveness, PC
bares a major drawback of modeling only the pairwise linear in-
teractions, without accounting for more complex influences among
multiple brain regions. To overcome this limitation, sparse repre-
sentation (SR) [31—-33] or similar methods such as graphical Lasso
[34,35], were adopted for constructing a sparse brain functional
network by considering multiple regions’ effects. With SR, the
BOLD signals of a brain region can be represented by a linear com-
bination of the signals from a small number of other brain regions,
and the estimated combination weights can be regarded as the FCs.
However, due to data-driven nature in SR and other similar meth-
ods, a potential issue is that the constructed brain functional net-
work in the individual level inevitably leads to the relatively large
inter-subject variability in the topographical structure of the net-
works due to the unpredictable (but individually different) interfer-
ences of imaging noises and artifacts. This could lead to a conse-
quence of poor generalization ability for the subsequently trained
classifier due to the inhomogeneity or inconsistency across sub-
jects, and more problematically, produce the unsatisfactory MCI di-
agnosis accuracy since the subtle FC changes in MCls compared
to the controls are likely to be overwhelmed by such large inter-
subject variability [36].

By the enforcement of imposing a common sparsity structure
across all subjects, the population-based prior-constrained graph-
ical Lasso has been developed to reduce such inter-subject vari-
ability for constructing the group consistent individual brain func-
tional networks [37]. Aiming to increase the inter-subject compa-
rability, group sparse representation (GSR) has also been proposed
by jointly estimating the FC (i.e,, representation weights) for all
subjects using a group Lasso constraint with |, ;-norm [36], which
encourages the joint selection or deletion of certain connectivity
links for all the subjects. GSR provides an effective way to alle-
viate the concern of the inter-subject variability; however, it also
raises another concern in the opposite direction, i.e., it may sacri-
fice the between-group separability (e.g., separability between the
patient and control groups) due to excessive enforcing of a simi-
lar network topographical structure for all the subjects, ignoring
that fact subjects are from group. For MCI diagnosis, this will be-
come a disadvantage since the unconditionally inter-subject simi-
larity enforcement is likely to yield a suboptimal classification per-
formance [38]. In other word, the MCI subjects are less separable
from the healthy controls, based on the brain functional networks
constructed using GSR. Thus, a new method that can account for
both inter-subject consistency and inter-group separability is highly
desired for connectome-based individual diagnosis.

So far, many previous studies about unsupervised clustering,
classification or statistical difference analysis on the brain dis-
ease cohort [25,37,39,40] have suggested that subjects from the
same group often have larger FC similarity than those from differ-
ent groups. Recently, a connectivity strength-weighted SR method
was proposed for the individual brain network construction by in-
tegrating FC connectivity strength prior to better optimize brain
functional network [41]. This pioneering study indicates that the
network modeling with the guidance from individual FC strength
could achieve more biological meaningful results and also yield
improved disease classification accuracy. Inspired by these obser-
vations, we propose to explore individual FC information and in-
troduce such a prior into the GSR-based network modeling with
the goal of preserving systematical group difference without los-
ing the merit of inter-subject consistency contributed by the group
sparse learning. In particular, we first compute inter-regional pair-

wise FC by measuring temporal synchronization of the BOLD sig-
nals with PC for each individual, and then incorporate these PC-
based FC strengths as a priori to guide the group-level brain net-
work modeling in the GSR learning framework for both patient
and healthy control groups. We hypothesize that the constructed
brain functional networks can thus share similar topological struc-
ture (i.e., comparable) but still keep adequate subject-specific con-
nectivity patterns (i.e., separable), which will thus increase dis-
ease classification accuracy. We can refer the PC-based connec-
tivity to as low-order FC (LOFC) since it characterizes the simple
pairwise temporal correlation of BOLD signals. In addition, we fur-
ther propose to estimate a high-order FC (HOFC) by measuring the
inter-subject LOFC-profile similarity (by comparing the LOFC pat-
tern of each brain region between each pair of subjects) as another
guidance for GSR-based network modeling. Such a guidance is in-
troduced by constructing a graph Laplacian that penalizes those
excessive “inter-subject connectivity differences” for the subjects
from the same group, while retaining su cient connectivity dif-
ferences between subjects from different groups. Therefore, our
method can seamlessly integrate both individual LOFC strength and
inter-subject LOFC similarity (i.e., HOFC across subjects) into the
same GSR-based network estimation framework, namely “Strength-
and Similarity-Guided GSR (SSGSR)”. Because the SSGSR can ex-
ploit and utilize both LOFC and HOFC priors, we expect this will
provide more reliable and biologically meaningful brain functional
networks that can facilitate individualized MCI diagnosis.

To validate the effectiveness of our proposed methods, we con-
duct an experimental study based on the rs-fMRI data from the
ADNI-2 dataset. Extensive comparisons are carried out between
our method and other state-of-the-art algorithms for MCI diag-
nosis, a challenging problem due to subtle pathological changes,
compared with large inter-subject variability. Experimental re-
sults show that our methods can not only effectively detect
group difference, but also significantly improve the brain functional
connectomics-based MCI diagnosis.

2. Methods
2.1. General GSR-based functional network construction

Suppose that X; = [x},...,x{,...,xf] RP*R contains the mean
time series of a total of R regions-of-interest (ROIs) for the ith sub-
ject, where P is the number of temporal points in each mean time
series. Without loss of generality, let us assume that x{ has been
de-meaned and variance-standardized. With PC, the LOFC network
of each subject i can be roughly estimated by calculating the full
correlation C; =XiTXi, such that the rth column ¢ in C; charac-
terizes the functional interactions between the rth ROl and all
other ROIs (i.e., one-to-all LOFC-pattern of the rth ROI for the ith
subject). Different from PC, SR estimates such a one-to-all LOFC-
pattern wir through linearly regressing BOLD signals from the rth
ROI xir by BOLD signals of all other regions Xir using a l-norm
sparse regularization:

r— 1 r ot 2 r

wi = argrrvlvlirni X—=Xwj 5+ W g, (@)
where is a regularization parameter controlling the sparsity of
wi. Note that SR models a brain functional network for each sub-
ject separately, which may easily lead to relatively large inter-
subject variability in wi. GSR-based brain functional network mod-
eling can alleviate such a problem by jointly estimating non-
zero connections across subjects via |, 1-norm regularization-
based group lasso:

N
W' =argmin
WI’
i=1

W' 51, (2
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where W' = [w],...,w],...,w]] consists of the one-to-all LOFC
patterns of the rth ROI for all N subjects, and controls the ex-
tent of group sparsity. The brain functional networks modeled by
GSR will share similar topological structures (by enforcing simi-
lar nonzero or zero connectivities for all subjects) to reduce inter-
subject variability. However, an inherent problem of GSR roots in
the group Lasso constraint term, which could sacrifice the poten-
tially important between-group differences that often benefit the
disease diagnosis. Next, we describe our SSGSR model to resolve
this problem.

2.2. Strength-guided GSR (SGSR)

To improve brain disease diagnosis, we need to find out appro-
priate priors to guide the GSR model but will not sacrifice the im-
portant group difference in the constructed networks. We propose
to incorporate the individual LOFC strength and inter-subject LOFC
pattern similarity to the GSR-based network construction for pro-
viding better separability between different groups. The details of
our proposed SSGSR algorithm are described below.

We first propose to incorporate the PC-based individual FC
strengths into the GSR method to guide group-level brain func-
tional network modeling. To this end, a weighting term is de-
fined based on each subjects PC-based LOFC strength as bir'k=

exp(—(cir*k)z) to penalize the estimated link between the rth and
the kth ROIs (where i denotes the ith subject). Accordingly, a LOFC-
strength-guided GSR (SGSR) model can be formulated as:

N
W' = arg min
Wiz
where B"=[b],...,bl,...,b{] is a weighting matrix with ele-
ments being bl = [bl*, ..., b, b, bIF], and  denotes the
element-wise product. That is, the link with larger LOFC strength
ci"k (more likely to be the true connectivity) between these two
ROIs will got less penalized while the link(s) with smaller LOFC
strength (more noise-pruned) will get more penalized. In this way,
these modeled brain functional networks hold the group-shared
network topological structure and also reflect the subject-specific
raw functional connectivity strength. In other words, this model-
ing method can not only ensure more biologically meaningful brain
functional network construction, but also achieve improved net-
work separability between subjects from different groups, under the
hypothesis that the biologically meaningful functional networks in-
deed contain information for the group separation. We call this
method as (PC-based FC) Strength-Guided GSR, shortly as SGSR.

1
r _ yhoat 2 r
5 X —Xjw; 3 + B

Wr 2,1y (3)

2.3. Strength- and similarity-guided GSR (SSGSR)

It should be noted that the aforementioned SGSR model only
considers the individual-level LOFCs as weights in the network
construction. The major drawbacks of this method are (1) the LOFC
used can only measure simple functional dependence between two
brain regions, and (2) the LOFC-weighting is carried out for each
individual separately, while the inter-subject similarity of LOFC is
important for classification but has been ignored. To this end, we
further propose to estimate a HOFC by measuring inter-subject
LOFC profile similarity as an additional source of guidance for the
SGSR model. In the following, we introduce the details on how the
HOFC constraint can be integrated into the SGSR-based method to-
wards better brain functional network construction.

Let c¢f and cg denote the regional LOFC-patterns (estimated by
PC) of the rth ROI (one-to-all LOFC) for the ith and the jth subjects,
respectively. A graph Laplacian can be constructed with a similarity
matrix S = [s] ;] RN*N with s =exp(— ¢ —¢] 2) defining the
pairwise similarity of subjects in terms of their LOFC patterns for

the rth ROI. Then, a similarity-preserving regularization term can
be defined to incorporate inter-subject similarity/difference as fol-
lows:

"= s owi-w) Z=tr(wiLi(wn)"), (4)

i,j=1
where L' = D' — 87, and D' R"*N is a diagonal matrix with its di-
agonal elements defined as df, = J-siri. By integrating the regular-
ization term " into (3), our newly proposed SSGSR model can be
formulated as:

N

1
r — H I what 2 r
w —argmwlrn > Xi—Xjw; 5 + 1 B
i=1

+ Ltr(WrL(wn)7), ©)

r
W' 54

where ; and , are the regularization parameters used to con-
trol group sparsity and inter-subject LOFC-pattern similarity, re-
spectively. In the model formulated above, by further adding the
second regularization term ', we encourage inter-subject brain
network resemblance if their PC-based regional LOFC patterns are
similar. This will act with a power of suppressing the within-group
FC differences while retaining the su cient between-group differ-
ences, under a generally acceptable hypothesis that the overall
LOFC similarity for subjects within a group is larger than subjects
from different groups. In other words, the proposed new model
will allow us to achieve good between-group separability without
losing the merit of group sparsity. Under such situation, we can
achieve the improved individual separability to further promote
connectomics-based brain disease diagnosis. This enhanced sepa-
rability also has its biological meaning, as suggested by numerous
previous studies [25,39] using unsupervised clustering or classifica-
tion to group subjects from the same group. Therefore, we call our
method as (PC-based FC) Strength- and (PC-based FC) Similarity-
Guided GSR, shortly as SSGSR, which is an improved version of
both GSR and SGSR. Of note, the SSGSR can be simply applied to
multiple-group studies, or single-group studies that focus on inter-
subject variability, because no group label is used during the func-
tional network construction.

Fig. 1 illustrates the framework of the SSGSR algorithm for
brain network modeling. Specifically, for the ith subject, the con-
structed brain functional network is formed as G; = [gil, giz, ey giR],
where g = [wlt, ..., wh0,wP™, L wiF] consists of the es-
timated FCs between the rth ROl and all other ROIs. Since the
network matrix G; is typically asymmetric, a symmetry operation
G; = (G;+ GiT)/2 can be further carried out to achieve a symmet-
ric network (although in classification study this assumption is not
necessary). The optimization problems of the aforementioned net-
work modeling methods can be solved based on the group sparse
learning [42,43]. Some other algorithms [44—-46] about matrix fac-
torization could also be adopted to solve these optimization prob-
lems.

3. Experiments
3.1 Data acquisition and pre-processing

In this study, we used the Alzheimers Disease Neuroimaging
Initiative (ADNI) dataset (http://adni.loni.usc.edu/) for validation of
our proposed functional network modeling algorithms. ADNI was
launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies and non-
profit organizations. The original goal was to define biomarkers
for use in clinical trials to determine the most appropriate way to
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Fig. 1. Framework of the proposed method for brain functional network construction.

measure treatment effects of AD. The current goal has been ex-
tended to discover more effective methods to early detect AD at
its pre-dementia stage.

A total of 52 normal control (NC) subjects and 52 MCI patients
with rs-fMRI data are selected from the ADNI-2 dataset in our
experiments. Informed consent was obtained from all individual
participants included in the study. Subjects from both classes are
age- and gender-matched, and they were all scanned using 3.0T
Philips scanners. The rs-fMRI data are preprocessed using SPM8
software (http://www . fil.ion.ucl.ac.uk/spm/software/spm8/) accord-
ing to a well-accepted pipeline. Specifically, the first three volumes
of each subject are discarded before preprocessing for magneti-
zation equilibrium. Preceded by rigid-body registration for head
motion correction, the rs-fMRI data are normalized to Montreal
Neurological Institute (MNI) space and spatially smoothed using
a Gaussian kernel with full-width-at-half-maximum (FWHM) of
6x6x6 mm3. Of note, scrubbing is not performed on the data
with the frame-wise displacement (FD) larger than 0.5mm to
avoid introducing additional artifacts. However, during data screen-
ing, the subjects with more than 2.5-min rs-fMRI data and FD
> 0.5 are excluded from further processing. With the Automated
Anatomical Labeling (AAL) template, the rs-fMRI data are then par-
cellated into 116 ROIs. In each ROI, the mean BOLD time series is
extracted and band-pass filtered between 0.015 and 0.15 Hz. Head
motion parameters and the mean BOLD time series of both white
matter and cerebrospinal fluid are regressed out for reducing the
potential interference to the subsequent brain functional network
construction.

3.2. Intuitive comparison of different brain functional network
construction methods

Fig. 2 visualizes the representative brain functional networks of
four randomly selected subjects (i.e., two MCls and two NCs) con-
structed using PC, SR, GSR, SGSR, and SSGSR, respectively. Com-
pared with the other four sparse representation-based networks,
PC-based networks contain much denser connections and have
prominently larger individual variability. To further investigate the

inter-subject variability, the standard deviation of each connection
is calculated across subjects within each of MCI and NC groups,
and further averaged for each of the constructed brain functional
networks (see Fig. 3). We also evaluate the separability of the brain
functional networks between the MCIs and the NCs by calculat-
ing the discriminability index, defined by squared pointwise bise-
rial correlation coe cient (r2 value) [47] in Fig. 4, where the larger
r? value indicates higher separability. The number of connections
with r2>0.05 is 122, 134, 152, 188, and 246 for PC, SR, GSR, SGSR,
and SSGSR, respectively. As shown in Fig. 3, the networks derived
from GSR, SGSR and SSGSR present relatively lower inter-subject
variability, compared with the PC- and SR-based networks, indicat-
ing the effectiveness of the group sparsity constraint in reducing
individual variability. Although the GSR achieves the best compa-
rability, as indicated by Fig. 4, it fails to provide satisfactory sep-
arability between subjects from two different groups. Instead, by
incorporating individual FC strength in the GSR, the SGSR-based
brain functional networks provide an improved between-group
separability. Furthermore, the SSGSR not only utilizes individual FC
strength but also, more importantly, explicitly integrates the inter-
subject FC pattern similarity into the GSR model, thus further im-
proving between-group separability.

3.3. MCI classification and performance evaluation

For each network modeling method, a feature vector is formed
by concatenating the upper triangular elements of the constructed
network of each subject. That is, the dimensionality of the feature
vector is 116 x (116 — 1)/2 = 6670. Two-sample t-tests with a sig-
nificance level of p<0.05 (uncorrected) are carried out to reduce
the redundant features. Furthermore, least absolute shrinkage and
selection operator (Lasso) [48-50] is adopted to select the feature
subset with higher discriminability. Finally, a support vector ma-
chine (SVM) with a linear kernel is trained on the selected feature
subset for MCI classification. The whole procedure is illustrated by
Fig. 5.

Classification performance is evaluated based on classification
accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), and
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Fig. 2. Comparison of brain functional networks of four subjects (two MCIs and two NCs), constructed by five different methods: Pearsons correlation (PC), sparse rep-
resentation (SR), group sparse representation (GSR), strength guided group sparse representation (SGSR), and strength and similarity guided group sparse representation

(SSGSR).
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Fig. 3. Within-group inter-subject variability of the brain functional networks constructed by PC, SR, GSR, SGSR and SSGSR, respectively. The standard deviation of each
connection is calculated across subjects within each of MCI and NC groups, and then averaged to evaluate the inter-subject variability.

specificity (SPE). These statistical measures are defined as:

TP+TN
Al =
cc TP+FP+TN+FN’ ©)
TP N
EN= e SPE T TRere @

where TP, TN, FP and FN denote the true positive, true negative,
false positive and false negative, respectively. Thus, ACC measures
the proportion of subjects correctly classified among all subject,
SEN and SPE correspond to the proportions of MCI patients and
NC correctly classified, respectively. ROC curve is a graphical plot
illustrating the diagnostic ability of a binary classifier system as
its discrimination threshold is varied. AUC represents the proba-
bility that the classifier will assign a higher score to a randomly
chosen positive example than to a randomly chosen negative
example.

To evaluate the effectiveness of our proposed framework, we
have made extensive comparisons with the brain functional net-
works constructed by Pearson’s correlation (PC), sparse represen-
tation (SR), connectivity-weighted SR (WSR) [41], group sparse
representation (GSR) [36], strength-guided GSR (SGSR), and both
strength and similarity-guided (SSGSR), respectively, using the
same dataset. The leave-one-out cross-validation (LOOCV) scheme
is adopted for evaluation of diagnosis performance. In each fold of
LOOCV procedure, an additional inner LOOCV is also carried out
on the training data to determine the optimal hyper-parameters
(i.e., for SR, WSR, GSR, and SGSR, and 4, , for SSGSR, as well
as the soft-margin parameter C for SVM). The selection ranges
of , ;and , are [0.01,0.02,...,0.1], while C is selected from
[0.05,0.1,...,1].

Fig. 6 shows the classification results derived by different brain
functional network modeling methods. Compared with PC, all of
other sparse representation-based methods improved the classifi-
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Fig. 4. Separability of each connection in the brain functional networks constructed by PC, SR, GSR, SGSR and SSGSR, respectively. The separability is evaluated by computing

the discriminability index r? value.
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Fig. 6. Classification performance comparison among different methods.

cation accuracy in the varying degrees. Among them, the proposed
SSGSR method produced the highest accuracy of 88.5%, with im-
provements of 24.1%, 18.3%, 9.7%, 10.6% and 4.8% compared with
PC, SR, WSR, GSR, and SGSR, respectively. Fig. 7 further depicts the
ROC curves derived by the comparison methods. To investigate the
significance of classification performance difference between dif-
ferent methods, we have carried out a non-parametric statistical
analysis, namely DelLong’s test [51], for the comparison of each two
ROC curves calculated on the dataset, with a confidence interval
of 95%. The results indicate that SSGSR performs significantly bet-
ter than PC, SR, WSR, GSR and SGSR with p values = 1.26 x 1075,
3.34 % 107%, 0.003, 0.001 and 0.028, respectively.

4. Discussion
4.1. Performance comparison with state-of-the-art results

In addition to the above-mentioned experimental analyses, we
also compare the performance of our proposed SSGSR method
with the performances of several recent state-of-the-art studies
that also use rs-fMRI data for MCI vs. NC diagnosis (see Table 1).
These state-of-the-arts are briefed as follows. Wee et al. [36] com-
bined group Lasso model with multi-spectrum strategy to con-
struct group-level brain networks for MCI diagnosis. Wang et al.
[29] proposed to estimate the frequency-dependent brain net-
works using wavelet-based correlations of both high- and low-
resolution parcellation units. Graph theoretical analyses were then
implemented on these constructed brain networks for distinguish-
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Table 1

Comparison with other existing studies using rs-fMRI data for MCI vs. NC classifi-
cation.

Method Subjects ACC (%) AUC  SEN (%)  SPE (%)
Wee et al. [36] 25 MCl + 25 NC  84.0 0870 840 84.0
Wang et al. [29] 37 MCI + 47 NC 857 0904 865 85.1
Challis et al. [52] 39 MCI + 50 NC 810 - 79.0 83.0
Zhang et al. [53] 22 MCl + 18 NC 875 0929 909 83.3
Proposed 52 MCl + 52 NC 885 0.965 862 90.4

ing MCI individuals from NC subjects. Challis et al. [52] intro-
duced a Bayesian Gaussian process logistic regression model with
covariance-based connectivity metric to MCI classification. Zhang
et al. [53] constructed PC-based brain networks with two sample
t-test for feature extraction, and designed an Il,-regularized logistic
regression classifier for MCI diagnosis. Among all these compari-
son methods, our approach achieved the best classification perfor-
mance with higher ACC, AUC and SPE. Moreover, the experimental
results derived from our study are based on the largest number of
subjects among all other state-of-the-arts studies under compari-
son, thus providing further evidence for the reliability, generaliza-
tion ability and e cacy of our proposed method.

It should be noted that feature selection and classification were
separately implemented in our diagnosis framework. These two
procedures could be integrated into one step using more advanced
machine learning technologies, such as random forest [54] or deep
learning [55], which may provide further improved diagnosis per-
formance. This is worth our further investigation.

4.2. Parameter sensitivity

The effectiveness of our proposed method is affected by the
selection of hyperparameters, i.e., 1 for strength-weighted group
sparsity and , for inter-subject LOFC pattern similarity. In our ex-
periment, we implement a grid search to select the optimal pa-
rameter values on the training data using inner LOOCV. To inves-
tigate the parameter sensitivity of our network modeling method,
we evaluate effects of varying values of these two hyperparame-
ters on classification accuracy using LOOCV with all subjects. Fig. 8
depicts classification accuracies obtained using the brain networks

Fig. 8. Classification accuracy derived based on the brain functional networks con-
structed by SSGSR with different values of the hyperparameters. The parameter
range is [0.01, 0.02, ..., 0.1]. The results are obtained using LOOCV on all subjects.
The highest accuracy is 91.4% when ; =0.04 and , = 0.05.

constructed by our proposed SSGSR method with different set-
tings for the aforementioned hyperparameters. The best accuracy
of 91.4% is achieved by using ; = 0.04 for strength-weighted spar-
sity and , =0.05 for similarity constraint. It can be seen that
the classification accuracy 88.5% yielded by our method with the
hyperparameters estimated from the inner LOOCV is close to the
best (up-limit) accuracy 91.4% that is achieved by using the spe-
cific parameters selected based on all subjects. Our future study
will further validate performance of the proposed algorithm on a
completely independent dataset.

4.3. Most discriminative connections and brain regions

To further validate our method, we investigate the connections
with potential biological meaning (i.e., importance for MCI identi-
fication) based on the brain functional networks modeled by our
proposed SSGSR method. These connections are regarded as po-
tential imaging biomarkers for early AD diagnosis. Here, the values
of the weighting coe cients of the trained SVM model reflect the
importance of selected features for accurate MCI classification. We
calculate the mean SVM-derived weighting coe cient of each fea-
ture across all the LOOCV folds during the training process, since
the selected features vary in each LOOCV fold. Fig. 9 shows the
top ten discriminative connections. Fig. 10 further presents the 19
brain regions involved in the top ten discriminative connections. A
approach for 3D visualization of these connections and brain re-
gions can be found in literature [56].

Most of these brain regions have been indicated to be closely
related to AD pathology in previous studies. Specifically, many
selected regions, including the hippocampus, posterior cingulate
gyrus, middle temporal gyrus, angular gyrus, and supramarginal
gyrus, are included or partially included in the default mode net-
work (DMN). It is believed that the DMN plays an important role
in high-level cognitive functions, including episodic memory [57],
while the abnormality of the DMN functional connectivities can
be observed across a range of neurological disorders, including AD
and MCI [58]. Extensive researches have indicated that the hip-
pocampus is sensitive to the pathology attack in the early stage of
AD [59,60]. Abnormal structural, functional, and metabolic changes
were reported in the posterior cingulate gyrus of the MCI individ-
uals [61,62], which may be closely associated with the deficits in
memory functions, object recognition, or evaluation of information
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Fig. 9. The top ten discriminative connections determined by the weighting coe cients of SYM based on the brain functional networks constructed using our proposed

SSGSR method.

Fig. 10. The discriminative brain regions corresponding to the top ten selected connections.

Table 2

Brain regions corresponding to the most discriminative connections.

ROI' 1 ROI 2

Index Name Index Name

9 Left orbitofrontal cortex (middle) 80 Right transverse temporal gyrus
21 Left olfactory cortex 22 Right olfactory cortex

15 Left inferior frontal gyrus 70 Right paracentral lobule

35 Left posterior cingulate gyrus 87 Left middle temporal pole

36 Right posterior cingulate gyrus 110 Lobule III of vermis

37 Left hippocampus 80 Right transverse temporal gyrus
56 Right fusiform gyrus 86 Right middle temporal gyrus
63 Left supramarginal gyrus 79 Left transverse temporal gyrus
65 Left angular gyrus 89 Left inferior temporal gyrus

71 Left caudate nucleus 100 Right lobule VI of cerebellar hemisphere

[63]. Compared with stable MCI individuals, those who converted
to AD had more atrophy on the left lateral temporal lobe, espe-
cially on the middle temporal gyrus [64], which has been reported
as a significant imaging biomarker for distinguishing AD from NC
subjects [65]. MCI individuals have been also found to show de-
creased centrality, compared with NC subjects, in the left angular
gyrus [24]. In addition to being an important part of the DMN, the
angular gyrus is also responsible for complex language functions,
especially the language comprehension [66].

Beside the DMN, most of other selected brain regions have also
shown their importance for early AD diagnosis. Both connectiv-
ity density reduction and network wiring e ciency decrease were
also observed in the olfactory cortex of AD patients [67], which
is associated with olfactory dysfunction, a sensitive and early be-

havioral marker for neurodegenerative diseases [68]. The inferior
temporal gyrus have been confirmed to be affected in the pro-
dromal stage of AD via pathological studies [69]; note that this
region is a typical multimodal association area, closely related
to advanced brain functions such as the verbal fluency [70]. The
selected brain region at the left orbitofrontal cortex has been
found to show the potential clinical correlations with the clini-
cally well-described AD impairment such as the deteriorated mo-
tivation and value assignment [71]. In addition, both the right lob-
ule VI of cerebellar hemisphere and the right lobule Ill of the
vermis have also been shown to be affected in the early stage
of AD [72]. The names and indices of these brain regions (corre-
sponding to the most discriminative connections) are summarized
in Table 2.
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5. Conclusions

In this study, we propose a more accurate and biologically
meaningful brain functional network modeling method, namely SS-
GSR, for better MCI individual identification. Our model seamlessly
integrates both low- and high-level functional connectivity priors
to guide the brain functional network construction, which effec-
tively captures individual’s robust and strong connectivity strength
and incorporates the advantage of inter-subject connectivity pat-
tern (dis)similarity for better detection of group differences. Ac-
cordingly, more accurate brain functional network modeling is
achieved by using our proposed SSGSR method, as shown by not
only significant improvement of individualized MCI detection but
also discovery of more biologically meaningful functional connec-
tivity biomarkers. The effectiveness of our method has also been
proven by comparing with multiple competing approaches on the
same dataset and also with the results reported in other state-
of-the-art literature. All these evidence suggest the promise of
our proposed method for possible clinical studies, especially for
biomarker detection and personalized brain connectomics-based
disease diagnosis. Our future studies will optimize the selection
strategy of model parameters in a more e cient way, and vali-
date the performance of our method on additional independent
datasets.
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