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and alleviation of patient discomfort during the MRF scan.
In this work, we aim to shorten the acquisition time of MRF by
acquiring fewer time points for each scan. However, acquiring
fewer time points will result in fewer sampled data avail-
able for tissue quantification and thus degraded quantification
accuracy. Thus, a robust tissue quantification method that can
accurately estimate tissue properties from fewer time points is
needed for further acceleration of MRF acquisition.

In the literature, various methods have been proposed for
tissue quantification in MRF. The original framework [8]
uses a template matching method, where the signal evolu-
tion at each pixel is matched to a precomputed dictionary
containing signal evolutions corresponding to a wide range
of tissue types. The tissue properties used to generate the
best matching entry in the dictionary are then assigned to
the corresponding pixel. McGivney et al. [14] propose to use
singular value decomposition (SVD) to reduce the dictio-
nary dimension, thus improving the computational efficiency.
Cauley et al. [15] have introduced a fast group matching
algorithm that assigns dictionary entries to several highly-
clustered groups to further accelerate the matching process.
Yang et al. [16] have developed randomized SVD and dic-
tionary polynomial fitting to largely reduce the memory
requirement of calculating low-rank approximations for large-
scale dictionaries. Davies et al. [17] combine the dictionary
matching technique with the compressed sensing (CS) frame-
work by iteratively performing MR image reconstruction and
tissue quantification to improve the quantification accuracy.
Furthermore, the CS-based method is improved by adding
certain constraints (i.e., low-rank constraint [18] and wavelet
domain sparsity [19]) on the reconstructed MR images and
reconstructing the MR images at different resolution levels to
suppress the noise in the reconstructed images [20]. However,
these methods only use the signal at a single pixel to esti-
mate tissue properties, without considering spatial informa-
tion of the whole image. To incorporate spatial information,
Gomez et al. [21] introduce a spatiotemporal dictionary, with
each entry containing signals at multiple neighboring pixels.
However, this method dramatically increases the dimension
of each dictionary entry and thus could only exploit spatial
information from a small neighborhood (e.g., 7 % 7 pixels)
due to its high computation load.

Besides the aforementioned dictionary-based methods, other
methods that do not involve dictionary matching have also
been developed for the tissue quantification process. These
methods can be roughly divided into two categories: 1) model-
based and 2) learning-based methods. The model-based
methods [22], [23] usually employ mathematical models to
simulate the signal generation and acquisition process of MRF,
and then obtain an statistically optimal estimation of the
tissue property maps from the observed signals. Although the
model-based methods provide new theoretical insights into the
MREF framework, they are subject to unavoidable mismatches
between mathematical models and the real-world non-ideal
imaging systems [24], and also need complex algorithms to
solve the statistical optimization problem. In the second cate-
gory, the learning-based methods [25]-[28] use deep learning
models to approximate a direct mapping from MRF signals to

the underlying tissue properties. These methods have demon-
strated improved computation efficiency since they perform
tissue quantification with feed-forward neural networks with-
out iterative computations. The performance of some learning-
based methods has been evaluated on in vivo human brain
data [27], [28]. However, previous learning-based methods
rely on signal evolution acquired from single pixel for tissue
quantification, without exploiting spatial context information
of images. Moreover, these methods aim at improving compu-
tation efficiency, while the potential for further acceleration of
MREF acquisition has not been evaluated in these approaches.

In this work, we propose a learning-based method for tissue
quantification in MRF. Our method exploits spatial context
information by using a deep learning model to learn the
mapping from the signals at multiple neighboring pixels to
the tissue properties at the central pixel. We hypothesize that
the spatial context information is helpful for accurate quan-
tification for two reasons. First, there is correlation between
tissue properties at neighboring pixels. For example, the tissue
properties at adjacent pixels in a homogeneous region are
likely to be similar. Therefore, information from neighboring
pixels could be utilized as spatial constraint to regularize
the estimation at the central target pixel for improving the
accuracy of tissue quantification. Second, signals at the target
pixel are distributed to its neighboring pixels due to the
aliasing effect caused by undersampling in k-space during
MREF acquisition. Therefore, using spatial information can help
recover the scattered signals and achieve a better quantification
with MRF.

A major challenge here is the high dimension of the
observed signal evolution at each pixel due to the large number
of acquired time points. To this end, we develop a unique
two-step deep learning model for spatially-constrained tissue
quantification, including 1) a feature extraction module in the
first step used to reduce the dimension of signals by extracting
a low-dimensional feature vector from the high-dimensional
signal evolution, and 2) a spatially-constrained quantification
module used to exploit the spatial information from the
extracted feature maps to generate the final tissue property
map. We further design a two-step training strategy for learn-
ing this two-step model. Moreover, a relative-difference-based
loss function is adopted to tackle with the large range of
the tissue property values to be estimated. Experiments on
6 subjects demonstrate that our method is superior to several
state-of-the-art methods.

The rest of this paper is organized as follows. We first
present materials used in this work and our proposed method
in Section II, and then introduce experimental results and
related analysis in Section III. In Section IV, we compare
quantification results for T1 and T2, compare our method with
previous studies, and present the limitations of the current
work and future research direction. We finally conclude this
paper in Section V.

[1. MATERIALS AND METHOD

In this section, we first describe the data acquisition and
preprocessing approach used in this work. We then present
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Fig. 1. Schematic overview of our proposed two-step deep learning model for spatially-constrained tissue quantification in MRF. FNN: fully-connected
neural network. CNN: convolutional neural network. The number of channels (each with paired FNN and CNN) is equal to the number of tissue

properties to be estimated (i.e., 2 in this study).

our proposed tissue quantification method in detail, including
our proposed two-step deep learning model, two-step training
strategy, and implementation details.

A. Data Acquisition and Preprocessing

All imaging was performed on a Siemens 3T Prisma
scanner. A 32-channel head coil was used for signal recep-
tion. MRF data of axial human brain slices were acquired
using the fast imaging with steady state precession (FISP)
sequence [29]. A total of 2,304 time points were acquired
for each scan, and data from only one spiral readout was
acquired for each time point (reduction factor = 48). Other
imaging parameters used in this study included: field of view
(FOV) = 30 cm; matrix size = 256 < 256; slice thickness =
5 mm; flip angle = 5° 12°. A constant TR of 7.0 msec
was used and the acquisition time for each 2D MRF dataset
was 23 seconds.

The MRF dictionary used in this study contains 13,123 com-
binations of T1 (60 5000 ms, with an increment of 10 ms
below 2000 ms, an increment of 20 ms between 2000 ms
and 3000 ms, an increment of 50 ms between 3000 ms and
3500 ms, and an increment of 500 ms above 3500 ms) and
T2 (10 500 ms, with an increment of 5 ms below 200 ms,
an increment of 10 ms between 200 ms and 300 ms, and
an increment of 50 ms above 300 ms). The signal evolution
corresponding to each combination was simulated using Bloch
equations.

The ground-truth tissue property maps were obtained from
the acquired MRF data of all 2,304 time points by using the
dictionary matching method as introduced in the original MRF
framework [8]. Specifically, MR images are first reconstructed
using non-uniform Fast Fourier Transform (NUFFT) [30].
Next, the signal evolution in the dictionary that best matches
the observed signal evolution at each pixel is selected by using
the cross correlation as similarity metric. The T1 and T2 values
corresponding to the best-matching entry are assigned to that
pixel. Repeated over the entire image, this process yields
quantitative T1 and T2 maps simultaneously. The obtained
tissue property maps are then used as the ground truth in the
following experiments. Since the magnitudes of MRF signal
evolutions vary largely across different subjects, the MRF
signal is normalized to a common range for better general-
ization of the deep learning model. Specifically, we normalize
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Fig. 2. Network structure of the fully-connected neural network (FNN) in
our proposed feature extraction (FE) module. Each blue arrow represents
a fully-connected (FC) layer, and each blue block represents the output
of an FC layer.

the energy (i.e., the sum of squared magnitudes) of each
signal evolution to one, which is similar to the normalization
performed when calculating cross correlation in the dictionary
matching method [8].

For simplicity, denote the normalized MRF signals of an
axial slice as X CM>*N*T "where M x N is the size of the
imaging matrix, i.e., 256 % 256 in this study, and T is the
number of time points used for tissue quantification. Denote
the signal evolution at the pixel (M, n) as Xmn C'. Denote
the ground-truth tissue property (T1 or T2) map of that axial
slice as RMxN

B. Proposed Model

We design a two-step deep learning model to learn the
mapping from the MRF signals X to the tissue property
map . Our model contains two sequential components,
i.e., 1) a feature extraction (FE) module for reducing the
dimension of signal evolutions, and 2) a spatially-constrained
quantification (SQ) module for estimating the tissue property
maps from the extracted feature map. The schematic overview
of our proposed model is shown in Fig. 1, with Figs. 2 and 3
showing the detailed network structure for each of the two
modules. The structures of FE and SQ modules are described
in details in the following sections.

1) Feature Extraction Module: In the feature extraction (FE)
module, fully-connected neural networks (FNNs) are used to
convert the input high-dimensional signal evolution into a
low-dimensional feature vector which contains useful infor-
mation for tissue property estimation. One FNN is used to
extract the features useful for estimation of one specific tissue
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TABLE |
QUANTIFICATION ERRORS OF T1 AND T2 (MEAN = STANDARD DEVIATION, UNIT: %) YIELDED BY OUR METHOD (SCQ), THE BASELINE
METHOD (DM) AND THE STATE-OF-THE-ART METHODS (SDM, CSMR, AND DL) FOR EACH TEST SUBJECT. HERE, ar= 4

Subject DM SDM CSMR DL SCQ (ours)

1 239 +0.24 2.78 + 0.29 2.61 + 0.29 1.86 + 0.18 1.87 4 0.23

2 2.40 4 0.80 2.89 + 0.93 2.65 + 0.67 1.78 + 0.36 1.83 4+ 0.27

3 2.75 4+ 0.77 3.17 £ 0.86 2.91 £ 0.79 2.04 + 0.30 2.07 £+ 0.27

Ti 4 2.90 + 0.74 3.51 £ 0.97 438 + 0.97 2.17 + 0.46 1.85 + 0.28
5 2.71 4+ 0.78 3.15 + 0.96 3.34 4+ 0.83 2.12 4 0.46 2.08 + 0.23

6 2.13 4+ 0.39 2.53 4 0.58 2.29 + 0.47 172 + 0.20 1.64 £ 0.15

Overall 2.55 £ 0.62 3.00 £ 0.76 3.03 + 0.67 1.95 + 0.33 1.89 + 0.24

1 10.06 + 0.75 13.99 + 1.52 10.40 + 0.93 6.46 + 0.95 573 + 0.71

2 8.69 + 0.68 11.87 + 1.44 8.57 4 0.59 6.35 + 1.04 5.47 + 0.60

3 9.96 + 1.52 13.96 + 2.23 9.60 + 1.43 6.68 + 1.13 6.29 + 0.89

™ 4 9.81 & 0.58 14.16 + 1.37 14.89 + 491 6.65 & 0.85 5.88 + 0.56
5 9.48 + 0.84 13.46 + 1.38 9.36 + 0.65 7.00 £ 1.51 5.81 + 0.66

6 8.82 + 0.87 13.34 + 1.41 8.78 + 1.57 5.69 + 0.77 5.45 + 0.70

Overall 9.47 4 0.87 13.46 + 1.56 10.27 + 1.68 6.47 + 1.04 5.77 + 0.69

TABLE Il guantibcation error than SCQ_S. Besides, the quantibcation

AVERAGE TESTING TIME REQUIRED BY OUR METHOD (SCQ),
THE BASELINE METHOD (DM) AND THE STATE-OF-THE-ART METHODS
(SDM, CSMR, AND DL) FOR T1 AND T2 QUANTIFICATION FOR AN
AXIAL SLICE WITH A MATRIX SIZE OF 256 x 256. UNITS:

SECOND (S) AND HOUR (H). HERE, ar= 4

DM SDM CSMR DL SCQ (ours)

26.2s  14.2s ~2h 18.0s 2.3s

Experiments were performed on an iMac (2017) desktop, with CPU: 4.2
GHz Intel Core i7, and memory: 16 GB 2400 MHz DDR4. DM, SDM,
DL, and SCQ were implemented in Python, and CSMR was implemented
in Matlab R2017a. Testing time is defined as the time for all computations
performed using the reconstructed MRF image series for the quantification of
both T1 and T2 maps. Specifically, the testing time of SDM includes both

error of SCQ brst drops then rises when the number of
extracted features increasegeSibcally, the error of SCQ
reaches the minimum for T1 whdb = 124, and for T2 when

D = 46. It is worth noting that the quantibcation error is lower
from SCQ_S than SCQ when the number of extracted features
is around 10. To further study this case, we examine the visual
results forD = 10 andD = 46 in Section I.C and Fig. S2 in
the Supplementary Materials.

2) InBuence of the FE and SQ Modules: In this group of
experiments, we study the importance of the FE module and
the SQ module, respectively, by removing each of them from
the original SCQ model.

Specibcally, we compare SCQ with its two degraded vari-

signal compression time and matching time. R
ants. In the brst variant (denoted &§-only), we feed the

high-dimensional MRF signals directly into the SQ mod-
ule, without using the FE module for dimension reduction.

In this subsection, we study the effect of three essential SQ-only, the number of input channels for the CNN in
components in our method for tissue quantibcation. All tH@Q module increases frond to 2T, with each channel
experiments in this subsection were performed veth= 4 corresponding to the real or imaginary part of the signal
and D = 46 unless stated otherwise. In the Supplementaay one time point. In the second variant (callE&-only),
Materials, we further analyze the inBuence of another twee use the extended FNN obtained from the pretraining of FE
components (i.e., network architecture and data normalizationpdule to estimate the tissue property from individual signal
in SCQ, with results shown in Fig. S1 and Tables SI-Slll. evolutions, without using the SQ module to exploit spatial

1) InBuence of Feature Number, and Comparison Between context information.

FNN and SVD: We evaluate the inBuence of the number of The results yielded by our SCQ method and its two variants
features extracted by the FE module, i.®, To estimate (i.e., SQ-only and FE-only) are summarized Table Il
possible values forD, we brst apply SVD to the MRF As shown inTable lll, removing the FE module (in SQ-only)
dictionary using the method in [14]. Multiple numbers ofncreases the quantibcation errors, which is likely due to the
singular values corresponding to certain energy thresholds awer-ptting problem caused by the increased network size in
then selected as the values. Specibcally, we selebt= 8, SQ module. Removing the SQ module (in FE-only) increases
10, 22, 46, 76, 124, and 170, corresponding to the enermgyantibcation errors, demonstrating the importance of the
thresholds of 90%, 95%, 99%, 99.9%, 99.99%, 99.999%, aptbposed SQ module and the spatial context information it
99.9999%, respectively. extracts for accurate tissue quantibcation.

We also compare our method (SCQ) with its vari@@Q_S 3) Importance of the Phase Information in MRF Signals: In
which uses SVD (instead of FNN) for feature extraction in theur SCQ method, both the real and imaginary parts of the
FE module. We use the method proposed in [14] to apply SMidmplex MRF signals are inputted to our model for tissue
to the MRF signal evolutions. guantibcation. In the previous work that applies deep learning

The quantibcation errors yielded by SCQ and SCQ_S with MRF [26], [28], only the magnitude of signals (without
different numbers of extracted features are summarized any phase information) is inputted. In this group of experi-
Fig. 6. As shown inFig. 6, SCQ generally yields lower ments, we study whether the phase in MRF signals provides

E. Effects of Important Components in Our Method
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Fig. 6. Quantification errors of (a) T1 and (b) T2 (mean = standard deviation, unit: %) yielded by our method (SCQ) and its variant (SCQ_S) which
uses SVD (instead of FNN) for feature extraction in the FE module, with different numbers of extracted features. Here, ar = 4.

TABLE Il
QUANTIFICATION ERRORS OF T1 AND T2 (MEAN = STANDARD
DEVIATION, UNIT: %) YIELDED BY OUR METHOD (SCQ) AND ITS
VARIANTS (SQ-ONLY AND FE-ONLY) WHERE ONLY ONE
OF THE MODULES EXISTS. HERE, ar=4

SQ-only FE-only SCQ (ours)

Tl 234 £040 241 +049 2.08 &+ 0.23

T2 642 +£0.64 7.02+0.78 5.81 + 0.66
TABLE IV

QUANTIFICATION ERRORS OF T1 AND T2 (MEAN % STANDARD
DEVIATION, UNIT: %) YIELDED BY OUR METHOD (SCQ) WHICH USES
BOTH THE REAL AND IMAGINARY PARTS OF MRF SIGNALS AS INPUT,

AND ITS VARIANT (SCQ_M) WHICH USES ONLY THE
MAGNITUDE OF SIGNALS AS INPUT. HERE, ar=4

SCQ_M SCQ (ours)
T1 1082 £2.12 2.08 £0.23
T2 1371 £2.11 5.81 + 0.66

valuable information for tissue quantification, by comparing
our method (SCQ) with its another variant, called SCQ_M,
which uses only the magnitude of signals as input. The results
are summarized in Table IV. As shown in Table IV, SCQ_M
yields much higher quantification errors than SCQ, suggesting
that both magnitude and phase values in MRF signals contain
useful information for tissue quantification. It is worth noting
that the error increase due to removing phase information is
much higher than that due to removing FE or SQ module (as
shown in Table III), which further demonstrates the importance
of phase information in MRF signals for accurate tissue
quantification. This result is consistent with recent findings
in [35].

IV. DISCUSSION
A. Difference Between T1 and T2

It has been observed in Figs. 4, 5, and 6 and
Tables I, III, and IV that both our SCQ method and the

existing methods yield higher accuracy for T1 quantification
than for T2 quantification. Previous studies have also observed
this difference for longer acquisitions [22], which indicates
that the FISP sequence is not as sensitive to T2 as to TI.
Moreover, the FISP sequence applies an inversion prepara-
tion pulse at the beginning of the acquisition, stimulating
T1-recovery-like dynamics that dominate the early portion of
signal evolutions [22]. Therefore, the early portion of signal
evolutions, which is used for tissue quantification in this study,
contains more information of T1 than of T2, resulting in
higher accuracy in T1 quantification. This also explains why
the optimal number of extracted features for T1 (i.e., 124) is
greater than that for T2 (i.e., 46), as shown in Section IILE.1,
as more features are needed to encode the information of
T1 contained in the MRF signals used for tissue quantification.

B. Flexibility of SCQ Framework

As demonstrated by the experiments with different acceler-
ation rates, our framework is flexible with different acquisition
lengths. Moreover, the framework can also be applied to
various other acquisition protocols, including different MRF
pulse sequences, under-sampling designs, and 3D imaging.
When applying our framework to a new acquisition protocol,
a new set of training dataset is likely needed to train the deep
neural networks (i.e., FNN and CNN in our framework) and
the model can then be applied to the data acquired with the
corresponding protocol.

Compared to the standard dictionary matching approach,
our framework could potentially provide more flexibility in
the estimation of tissue properties. Specifically, the MRF dic-
tionary only covers a limited range of discrete tissue property
values, which limits the precision of quantification and leads to
partial volume problems. In comparison, our framework learns
an unbounded and continuous mapping from MRF signals to
underlying tissue properties, which could potentially improve
the performance of tissue quantification.

C. Comparison With Previous Studies

Compared with the baseline DM method [8], our method
can significantly improve the quantification accuracy for
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highly-accelerated data, as shown in Figs. 4 and 5. However,
it is worth noting that some blurring effects can be observed
in the quantitative maps estimated by our method with 8 times
of acceleration (see Fig. 4). In the Supplementary Materials,
we further study this blurriness through frequency-domain
representations of the quantitative maps. The blurring effect of
our method potentially degrades spatial resolution and hinders
application for high-resolution imaging [36]-[39]. To tackle
with this problem, a loss function can be added to enhance
the high frequency details of our output tissue property map,
such as a discriminative loss within generative adversarial
networks (GAN) [40]-[42], or a gradient loss that minimizes
the difference between the gradient maps of network output
and the ground-truth tissue property map [42], [43].
Compared with three state-of-the-art methods (i.e., SDM,
CSMR, and DL), our method achieves higher quantification
accuracy with a shorter processing time, as shown in Tables
[ and II. Among the state-of-the-art methods, SDM reduces
the processing time of the baseline DM method by 46% but
achieves poorer quantification accuracy than DM. DL shortens
the processing time of DM by 31% while simultaneously
achieving higher accuracy. CSMR can achieve higher quan-
tification accuracy than the baseline DM method in certain
cases for T2, but at a cost of longer processing time. On the
other hand, our method can improve both the quantification
accuracy and the processing speed of the baseline DM method.
Furthermore, the dictionary-based methods, i.e., DM, SDM,
and CSMR, all have a testing time that grows exponentially
with the number of tissue properties to be estimated, since
the dictionary dimension grows exponentially with the number
of tissue properties [22], [25]. However, the testing time of
our method only grows linearly with the number of tissue
properties, as the number of networks used in our method
grows linearly with the number of tissue properties. Given
these relationships, our method is potentially superior to
the dictionary-based methods in computation efficiency when
more tissue properties are quantified with MRF in future work.

D. Limitations and Future Work

There are several limitations in the current method. First,
our method, like other deep-learning-based methods, needs
large amounts of training data for network learning. All the
training data used in this study are acquired from in vivo
subjects at our institution, while the number of subjects (i.e., 6)
is not large enough. In the future work, simulation data,
obtained from computer simulation based on the mathematical
models of the data generation and acquisition process, will
also be used for training to increase the training data size
and further optimize our model. Second, our method only
exploits the spatial context information inside an axial slice,
without considering the spatial information from neighboring
slices. Inspired by Liao et al. [44], Gémez et al. [45],
Ma et al. [46], and Chen et al. [47] that extend the MRF
framework from 2D to 3D, we will extend our 2D model
for 3D application to exploit the spatial information from all
3 spatial dimensions. Third, our method estimates different
tissue properties separately, ignoring the inherent relationship

among different tissue properties, e.g., T1 and T2. We plan to
explicitly exploit this correlation through a multi-target joint
estimation network [48] to improve the quantification accu-
racy. Finally, other advanced convolutional neural networks
besides the U-Net [32], e.g., ResNet [49], DenseNet [50] and
others [51]-[53], can also be used in SQ module to capture
spatial context information in MRF signals in future work.

Besides the aforementioned improvements in methodology,
more experiments can be also conducted to better evaluate
our method. First, in this work, we only test our method with
the FISP sequence. The performance of our method on other
MRF sequences, e.g., bSSFP [8], [54], is worth evaluating.
Second, we only examine two tissue properties, i.e., T1 and
T2 relaxation times, while other properties, e.g., spin density
and T2 relaxation time, are also worth evaluating. Third, our
dataset contains only healthy subjects with no brain lesions.
In the future work, data from subjects with brain lesions or
other brain diseases can be also used for testing, to better
evaluate our method’s potential for clinical usage.

V. CONCLUSION

In this paper, we have introduced a deep-learning-based
spatially-constrained tissue quantification method for magnetic
resonance fingerprinting (MRF). A unique two-step deep
learning model is proposed to tackle with the high dimen-
sionality of MRF data, including a feature extraction module
and a spatially-constrained quantification module. A two-step
training strategy and a relative-difference-based loss function
are used to optimize the performance of our model. Based on
the experimental results, our method can 1) achieve accurate
quantification of T1 and T2 relaxation times from highly
undersampled in vivo brain data, and 2) allow at least four
times of acceleration for MRF data acquisition without signif-
icant loss of accuracy in tissue quantification.
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